
Evolution of the Major Programming 
Languages

Lecture 02

Instructor: C. Pu (Ph.D., Assistant Professor)

puc@marshall.edu 



Zuse’s Plankalkül

 Designed in 1945, but not published until 1972.
 Never implemented.
 So few people were familiar with the language, some of its

capabilities did not appear in other languages until 15 years
after its development.

 Zuse developed a language for expressing computations for
the Z4, a project he had begun in 1943 as a proposal for his
Ph.D. dissertation.

 Plankalkul, means program calculus.
 Zuse defined Plankalkul, wrote algorithm in the language to

solve problems.



Zuse’s Plankalkül:
Language Review

 The simplest data type in Plankalhul was the single bit
 Integer and floating-point numeric types were built from the bit

type
 Plankalkul included arrays and records

 The records could include nested records
 It had an iterative statement
 It included a selection statement without else clause
 One of the most interesting features is the inclusion of

mathematical expressions showing the current relationships
between program variables

 These expressions stated what would be true during execution
at the points in the code

 Very similar to the assertions of Java



Zuse’s Plankalkül:
Language Review

 Assertions in Java
 An assertion allows testing the correctness of any assumptions that

have been made in the program.
 While executing assertion, it is believed to be true. If it fails, JVM

throws an error named AssertionError.
 It is mainly used for testing purposes during development.



Plankalkül Syntax

 Each statement consisted of either two or three lines of code
 1st line: like the statement of current language
 2nd line: optional, contains the subscripts of the array

references in the first line
 3rd line: contains the type names for the variables mentioned

in the first line
 Example: An assignment statement to assign the expression

A[4] + 1 to A[5]

V: subscript
S: data type
1.n: an integer of n bits



Minimal Hardware Programming: 
Pseudocodes

 The computer that became available in the late 1940s and early
1950s were far less usable than those of today.

 Slow
 Unreliable
 Expensive
 Small memories
 Difficult to program

 Programming was done in machine code
 ADD instruction might be specified by the code 14

 What was wrong with using machine code?
 Poor readability
 Poor modifiability
 Expression coding was tedious
 Machine deficiencies--no indexing or floating point



Minimal Hardware Programming: 
Pseudocodes

 Example of Machine code:
 Statement in high-level language

 Machine code



Pseudocodes: 
Short Code 

 Short Code developed by Mauchly in 1949 for BINAC
computers, which was one of the first successful stored-
program electronic computers.

 Short Code was one of the primary means of programming
those machines for several years.

 But, never published
 Little is known of the original Short Code.



Pseudocodes: 
Short Code 

 Short Code consisted of coded versions of mathematical
expressions that were to be evaluated

 The codes were byte-pair values, and many equations could be
coded in a word

 The following operation codes were included

 The statement X0 = SQRT(ABS(Y0)) would be coded as

(00: padding to fill the word)



Pseudocodes: 
Short Code 

 Short Code was not translated to machine code.

 It was implemented with a pure interpreter.

 Short Code interpretation was approximately 50 times
slower than machine code.



IBM 704 and Fortran:
Historical Background

 One of the primary reasons why the slowness of
interpretive systems was tolerated from the late 1940s to
the mid-1950s was the lack of floating-point hardware in
the available computers

 All floating-point operations had to be simulated in software,
a very time-consuming process

 The announcement of the IBM 704 system, with both
indexing and floating-point instructions in hardware,
heralded the end of the interpretive era, at least for
scientific computation

 The inclusion of floating-point hardware removed the hiding
place for the cost of interpretation



Design Process of Fortran 0

 Fortran 0 in 1954, not implemented.
 The document stated that

 Fortran would provide the efficiency of hand-coded programs and
the ease of programming of the interpretive pseudocode systems.

 Fortran would eliminate coding errors and the debugging process.
 Included little syntax error checking.

 Environment of development
 Computers had small memories and were slow and relatively

unreliable.
 The primary use of computers was for scientific computations.
 There were no existing efficient and effective ways to program

computers.
 Speed of the generated object code was the primary goal of the

first Fortran compilers.



Fortran I Overview

 First implemented version of Fortran

 Fortran I included
 input/output formatting
 variable names of up to six characters
 user-defined subroutines
 the If selection statement
 the Do loop statement
 no data-typing statements

 Variables whose names began with I, J, K, L, M, and N were
implicitly integer type

 All others were implicitly floating-point



Fortran II Overview

 Fortran II compiler was distributed in the spring of 1958
 It fixed many of the bugs in the Fortran I compilation system
 It added some significant features to the language

 The independent compilation of subroutines
 Without independent compilation, any change in a program

required that the entire program be recompiled



Fortran IV

 Fortran IV became one of the most widely used
programming languages of its time

 Evolved over the period 1960 to 1962
 Standardized as Fortran 66 (ANSI standard)
 Fortran IV was an improvement over Fortran II

 Explicit type declarations for variables
 Logical if statement
 Subprogram names could be parameters



Fortran 77

 Fortran IV was replaced by Fortran 77, which became the
new standard in 1978

 Fortran 77 retained most of the features of Fortran IV, and
added

 Character string handling
 Logical loop control statement
 if-else statement



Fortran 90

 Fortran 90 (ANSI, 1992) was dramatically different from
Fortran 77

 Dynamic arrays
 Records
 Pointers
 A multiple selection statement
 Modules
 Subprograms could be recursively called



Latest versions of Fortran

 Fortran 95 – relatively minor additions, plus some deletions

 Fortran 2003 – support for OOP

 Fortran 2008 – blocks for local scopes



Functional Programming: 
Lisp

 The first functional programming language was invented to
provide language features for list processing, the need for
which grew out of the first applications in the area of
artificial intelligence (AI)



LISP Overview:
Data Structures

 LISP has only two kinds of data structures
 Atoms

 Atoms are either symbols, which have the form of identifiers, or
numeric literals

 Lists
 A sequence of atoms and/or other lists enclosed in parentheses
 Allow insertions and deletions at any point

 Lists are specified by delimiting their elements with parentheses
 Simple lists

 Nested list structures are also specified by parentheses



LISP Overview:
Data Structures

 Internally, lists are stored as single-linked list structures
 Each node has two pointers and represents a list element
 A node containing an atom has its first pointer pointing to

some representation of the atom, such as its symbol or
numeric value, or a pointer to a sublist

 A node for a sublist element has its first pointer pointing to
the first node of the sublist

 In both cases, the second pointer of a node points to the
next element of the list

 A list is referenced by a pointer to its first element



Representation of Two Lisp Lists



LISP Overview:
Processes

 LISP was designed as a functional programming language

 All computation in a purely functional program is accomplished
by applying functions to arguments

 Neither the assignment statements nor the variables that
abound in imperative language programs are necessary in
functional language programs

 Repetitive processes can be specified with recursive function
calls, making iteration (loops) unnecessary



LISP Overview:
Syntax

 LISP is very different from the imperative languages
 because it is a functional programming language and
 because the appearance of LISP programs is so different from

those in languages like Java or C++

 For example
 The syntax of Java is a complicated mixture of English and

algebra
 LISP’s syntax is a model of simplicity

 Program code and data have exactly the same form:
parenthesized lists


	Evolution of the Major Programming Languages
	Zuse’s Plankalkül
	Zuse’s Plankalkül:�Language Review
	Zuse’s Plankalkül:�Language Review
	Plankalkül Syntax
	Minimal Hardware Programming: Pseudocodes
	Minimal Hardware Programming: Pseudocodes
	Pseudocodes: �Short Code 
	Pseudocodes: �Short Code 
	Pseudocodes: �Short Code 
	IBM 704 and Fortran:�Historical Background
	Design Process of Fortran 0
	Fortran I Overview
	Fortran II Overview
	Fortran IV
	Fortran 77
	Fortran 90
	Latest versions of Fortran
	Functional Programming: �Lisp
	LISP Overview:�Data Structures
	LISP Overview:�Data Structures
	Representation of Two Lisp Lists
	LISP Overview:�Processes
	LISP Overview:�Syntax

