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Introduction

 One of the problems in describing a language is the
diversity of the people who must understand the
description

 Initial evaluators
 Language’s designer
 The success of feedback cycle depends heavily on the

clarity of the description
 Implementers

 Determine how the expressions, statements, and program
units of a language are formed, and intended effect when
executed

 Users
 Determine how to encode software solutions by

referring to a language reference manual



Introduction

 The study of programming languages, like the study of
natural languages, can be divided into examinations of
syntax and semantics

 Syntax: the form of its expressions, statements, and program
units

 Semantics: the meaning of those expressions, statements,
and program units



Introduction

 For example
while (boolean_expr) statement

 Semantics:
 When the current value of Boolean expression is true, the

embedded statement is executed.
 Then control implicitly returns to the boolean_expr

expression to repeat the process.
 Otherwise, control continues after the while construct.



Introduction

 Syntax and semantics are closely related

 In a well-defined programming language, semantics should
follow directly from syntax

 The appearance of a statement should strongly suggest what
the statement is meant to accomplish



Describing Syntax

 A language, whether natural or artificial, is a set of strings of
characters from some alphabet

 The strings of a language are called sentences or
statements

 The syntax rules of a language specify which strings of
characters from the language’s alphabet are in the language

 For example, English
 Has a large and complex collection of rules for specifying the

syntax of its sentences



Describing Syntax

 The smallest units programming languages are called
lexemes

 The lexemes of a programming language include its numeric
literals, operators, and special words, among others

 One can think of programs as strings of lexemes rather than of
characters

 Lexemes are partitioned into groups

 Each lexeme group is represented by a name, or token
 A token of a language is a category of its lexemes



Describing Syntax

 For example, an identifier is a token that can have lexemes,
or instances, such as sum and total

 In some cases, a token has only a single possible lexeme
 For example, the token for the arithmetic operator symbol +

has just one possible lexeme



Describing Syntax

 Consider the following Java statement:
index = 2 * count + 17;

 The lexemes and tokens of this statement are



Language

 In general, languages can be formally defined in two distinct
ways:

 Recognition
 Generation



Language Recognizers

 Suppose we have a language L that uses an alphabet S of
characters

 To define L formally using the recognition method, we need
to construct a mechanism R, called the recognition device,
capable of reading strings of characters from the alphabet S

 R would indicate whether a given input string was or was not
in L

 In effect, R would either accept or reject the given string
 Such devices are like filters, separating legal sentences from

those that are incorrectly formed



Language Recognizers

 If R, when fed any string of characters over S, accepts it
only if it is in L, then R is a description of L.

 Because most useful languages are, for all practical purposes,
infinite, this might seem like a lengthy and ineffective
process.

 Recognition devices, however, are not used to enumerate
all of the sentences of a language—they have a different
purpose.



Language Recognizers

 The syntax analysis part of a compiler is a recognizer for
the language the compiler translates

 The recognizer need not test all possible strings of
characters from some set to determine whether each is in
the language

 Rather, it need only determine whether given programs are
in the language

 In effect then, the syntax analyzer determines whether the
given programs are syntactically correct



Language Generators

 A language generator is a device that can be used to
generate the sentences of a language



Formal Methods of Describing Syntax

 In the mid-1950s, Chomsky, a noted linguist (among other
things), described four classes of generative devices or
grammars that define four classes of languages (Chomsky,
1956, 1959)

 Two of these grammar classes, named context-free and
regular, turned out to be useful for describing the syntax of
programming languages

 The forms of the tokens of programming languages can be
described by regular grammars

 The syntax of whole programming languages can be
described by context-free grammars



Formal Methods of Describing Syntax

 Backus-Naur Form, or simply BNF, is a natural notation
for describing syntax

 It is remarkable that BNF is nearly identical to Chomsky’s
generative devices for context-free languages, called
context-free grammars



Fundamentals

 A metalanguage is a language that is used to describe
another language

 BNF is a metalanguage for programming languages
 BNF uses abstractions for syntactic structures
 A simple Java assignment statement, for example, might be

represented by the abstraction <assign>

left-hand side (LHS) right-hand side (RHS)
• Tokens
• Lexemes
• References to other abstraction

Altogether, the definition is called a rule or production



Fundamentals

 A simple Java assignment statement, for example, might be
represented by the abstraction <assign>

 This particular rule specifies that
 the abstraction <assign> is defined as an instance of the

abstraction <var>
 followed by the lexeme =
 followed by an instance of the abstraction <expression>

 One example sentence whose syntactic structure is
described by the rule is



Fundamentals

 The abstractions in a BNF description, or grammar, are often
called nonterminal symbols, or simply nonterminals

 The lexemes and tokens of the rules are called terminal
symbols, or simply terminals

 A BNF description, or grammar, is a collection of rules
 Nonterminal symbols can have two or more distinct

definitions, representing two or more possible syntactic
forms in the language

 Multiple definitions can be written as a single rule, with the
different definitions separated by the symbol |, meaning
logical OR



Fundamentals

 For example, a Java if statement can be described with the
rules

or with the rule

In these rules, <stmt> represents either a single statement or a 
compound statement



Describing Lists

 Variable-length lists in mathematics are often written using
an ellipsis (. . .)

 1, 2, . . . is an example
 BNF does not include the ellipsis, so an alternative method

is required for describing lists of syntactic elements in
programming languages

 For BNF, the alternative is recursion
 A rule is recursive if its LHS appears in its RHS
 The following rules illustrate how recursion is used to

describe lists



Grammars and Derivations

 A grammar is a generative device for defining languages

 The sentences of the language are generated through a
sequence of applications of the rules, beginning with a
special nonterminal of the grammar called the start symbol

 This sequence of rule applications is called a derivation

 In a grammar for a complete programming language, the
start symbol represents a complete program and is often
named <program>



Grammars and Derivations

 The simple grammar for assignment



Grammars and Derivations

 A derivation of a program in this language

<program> => begin <stmt_list> end
=> begin <stmt> ; <stmt_list> end
=> begin <var> = <expression> ; <stmt_list> end
=> begin A = <expression> ; <stmt_list> end
=> begin A = <var> + <var> ; <stmt_list> end
=> begin A = B + <var> ; <stmt_list> end
=> begin A = B + C ; <stmt_list> end
=> begin A = B + C ; <stmt> end
=> begin A = B + C ; <var> = <expression> end
=> begin A = B + C ; B = <expression> end
=> begin A = B + C ; B = <var> end
=> begin A = B + C ; B = C end

begin A = B + C ; B = C end



Grammars and Derivations

 This derivation, like all derivations, begins with the start symbol,
in this case <program>

 The symbol => is read “derives”.
 Each successive string in the sequence is derived from the

previous string by replacing one of the nonterminals with one of
that nonterminal’s definitions

 In this derivation, the replaced nonterminal is always the leftmost
nonterminal in the previous sentential form.

 Derivations that use this order of replacement are called leftmost
derivations

 In addition to leftmost, a derivation may be rightmost or in an
order that is neither leftmost nor rightmost.

 Derivation order has no effect on the language generated by a
grammar



Grammars and Derivations

 A Grammar for Simple Assignment Statements



Grammars and Derivations

 For example, the statement
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