
Syntax and Semantics

Lecture 04

Instructor: C. Pu (Ph.D., Assistant Professor)

puc@marshall.edu 



Introduction

 One of the problems in describing a language is the
diversity of the people who must understand the
description

 Initial evaluators
 Language’s designer
 The success of feedback cycle depends heavily on the

clarity of the description
 Implementers

 Determine how the expressions, statements, and program
units of a language are formed, and intended effect when
executed

 Users
 Determine how to encode software solutions by

referring to a language reference manual



Introduction

 The study of programming languages, like the study of
natural languages, can be divided into examinations of
syntax and semantics

 Syntax: the form of its expressions, statements, and program
units

 Semantics: the meaning of those expressions, statements,
and program units



Introduction

 For example
while (boolean_expr) statement

 Semantics:
 When the current value of Boolean expression is true, the

embedded statement is executed.
 Then control implicitly returns to the boolean_expr

expression to repeat the process.
 Otherwise, control continues after the while construct.



Introduction

 Syntax and semantics are closely related

 In a well-defined programming language, semantics should
follow directly from syntax

 The appearance of a statement should strongly suggest what
the statement is meant to accomplish



Describing Syntax

 A language, whether natural or artificial, is a set of strings of
characters from some alphabet

 The strings of a language are called sentences or
statements

 The syntax rules of a language specify which strings of
characters from the language’s alphabet are in the language

 For example, English
 Has a large and complex collection of rules for specifying the

syntax of its sentences



Describing Syntax

 The smallest units programming languages are called
lexemes

 The lexemes of a programming language include its numeric
literals, operators, and special words, among others

 One can think of programs as strings of lexemes rather than of
characters

 Lexemes are partitioned into groups

 Each lexeme group is represented by a name, or token
 A token of a language is a category of its lexemes



Describing Syntax

 For example, an identifier is a token that can have lexemes,
or instances, such as sum and total

 In some cases, a token has only a single possible lexeme
 For example, the token for the arithmetic operator symbol +

has just one possible lexeme



Describing Syntax

 Consider the following Java statement:
index = 2 * count + 17;

 The lexemes and tokens of this statement are



Language

 In general, languages can be formally defined in two distinct
ways:

 Recognition
 Generation



Language Recognizers

 Suppose we have a language L that uses an alphabet S of
characters

 To define L formally using the recognition method, we need
to construct a mechanism R, called the recognition device,
capable of reading strings of characters from the alphabet S

 R would indicate whether a given input string was or was not
in L

 In effect, R would either accept or reject the given string
 Such devices are like filters, separating legal sentences from

those that are incorrectly formed



Language Recognizers

 If R, when fed any string of characters over S, accepts it
only if it is in L, then R is a description of L.

 Because most useful languages are, for all practical purposes,
infinite, this might seem like a lengthy and ineffective
process.

 Recognition devices, however, are not used to enumerate
all of the sentences of a language—they have a different
purpose.



Language Recognizers

 The syntax analysis part of a compiler is a recognizer for
the language the compiler translates

 The recognizer need not test all possible strings of
characters from some set to determine whether each is in
the language

 Rather, it need only determine whether given programs are
in the language

 In effect then, the syntax analyzer determines whether the
given programs are syntactically correct



Language Generators

 A language generator is a device that can be used to
generate the sentences of a language



Formal Methods of Describing Syntax

 In the mid-1950s, Chomsky, a noted linguist (among other
things), described four classes of generative devices or
grammars that define four classes of languages (Chomsky,
1956, 1959)

 Two of these grammar classes, named context-free and
regular, turned out to be useful for describing the syntax of
programming languages

 The forms of the tokens of programming languages can be
described by regular grammars

 The syntax of whole programming languages can be
described by context-free grammars



Formal Methods of Describing Syntax

 Backus-Naur Form, or simply BNF, is a natural notation
for describing syntax

 It is remarkable that BNF is nearly identical to Chomsky’s
generative devices for context-free languages, called
context-free grammars



Fundamentals

 A metalanguage is a language that is used to describe
another language

 BNF is a metalanguage for programming languages
 BNF uses abstractions for syntactic structures
 A simple Java assignment statement, for example, might be

represented by the abstraction <assign>

left-hand side (LHS) right-hand side (RHS)
• Tokens
• Lexemes
• References to other abstraction

Altogether, the definition is called a rule or production



Fundamentals

 A simple Java assignment statement, for example, might be
represented by the abstraction <assign>

 This particular rule specifies that
 the abstraction <assign> is defined as an instance of the

abstraction <var>
 followed by the lexeme =
 followed by an instance of the abstraction <expression>

 One example sentence whose syntactic structure is
described by the rule is



Fundamentals

 The abstractions in a BNF description, or grammar, are often
called nonterminal symbols, or simply nonterminals

 The lexemes and tokens of the rules are called terminal
symbols, or simply terminals

 A BNF description, or grammar, is a collection of rules
 Nonterminal symbols can have two or more distinct

definitions, representing two or more possible syntactic
forms in the language

 Multiple definitions can be written as a single rule, with the
different definitions separated by the symbol |, meaning
logical OR



Fundamentals

 For example, a Java if statement can be described with the
rules

or with the rule

In these rules, <stmt> represents either a single statement or a 
compound statement



Describing Lists

 Variable-length lists in mathematics are often written using
an ellipsis (. . .)

 1, 2, . . . is an example
 BNF does not include the ellipsis, so an alternative method

is required for describing lists of syntactic elements in
programming languages

 For BNF, the alternative is recursion
 A rule is recursive if its LHS appears in its RHS
 The following rules illustrate how recursion is used to

describe lists



Grammars and Derivations

 A grammar is a generative device for defining languages

 The sentences of the language are generated through a
sequence of applications of the rules, beginning with a
special nonterminal of the grammar called the start symbol

 This sequence of rule applications is called a derivation

 In a grammar for a complete programming language, the
start symbol represents a complete program and is often
named <program>



Grammars and Derivations

 The simple grammar for assignment



Grammars and Derivations

 A derivation of a program in this language

<program> => begin <stmt_list> end
=> begin <stmt> ; <stmt_list> end
=> begin <var> = <expression> ; <stmt_list> end
=> begin A = <expression> ; <stmt_list> end
=> begin A = <var> + <var> ; <stmt_list> end
=> begin A = B + <var> ; <stmt_list> end
=> begin A = B + C ; <stmt_list> end
=> begin A = B + C ; <stmt> end
=> begin A = B + C ; <var> = <expression> end
=> begin A = B + C ; B = <expression> end
=> begin A = B + C ; B = <var> end
=> begin A = B + C ; B = C end

begin A = B + C ; B = C end



Grammars and Derivations

 This derivation, like all derivations, begins with the start symbol,
in this case <program>

 The symbol => is read “derives”.
 Each successive string in the sequence is derived from the

previous string by replacing one of the nonterminals with one of
that nonterminal’s definitions

 In this derivation, the replaced nonterminal is always the leftmost
nonterminal in the previous sentential form.

 Derivations that use this order of replacement are called leftmost
derivations

 In addition to leftmost, a derivation may be rightmost or in an
order that is neither leftmost nor rightmost.

 Derivation order has no effect on the language generated by a
grammar



Grammars and Derivations

 A Grammar for Simple Assignment Statements



Grammars and Derivations

 For example, the statement


	Syntax and Semantics
	Introduction
	Introduction
	Introduction
	Introduction
	Describing Syntax
	Describing Syntax
	Describing Syntax
	Describing Syntax
	Language
	Language Recognizers
	Language Recognizers
	Language Recognizers
	Language Generators
	Formal Methods of Describing Syntax
	Formal Methods of Describing Syntax
	Fundamentals
	Fundamentals
	Fundamentals
	Fundamentals
	Describing Lists
	Grammars and Derivations
	Grammars and Derivations
	Grammars and Derivations
	Grammars and Derivations
	Grammars and Derivations
	Grammars and Derivations

