
Syntax and Semantics

Lecture 05

Instructor: C. Pu (Ph.D., Assistant Professor)

puc@marshall.edu

Parse Tree

 One of the most attractive features of grammars is that they
naturally describe the hierarchical syntactic structure of the
sentences of the languages they define.

 These hierarchical structures are called parse trees.
 For example,

Parse Tree (cont.)

 The parse tree shows the
structure of the assignment
statement derived.

 Every internal node of a
parse tree is labeled with a
nonterminal symbol

Parse Tree (cont.)

 The parse tree shows the
structure of the assignment
statement derived.

 Every leaf is labeled with a
terminal symbol

Parse Tree (cont.)

 The parse tree shows the
structure of the assignment
statement derived.

 Every subtree of a parse
tree describes one
instance of an abstraction
in the sentence

Ambiguity

 A grammar that generates a sentential form for which there are
two or more distinct parse trees is said to be ambiguous.

 Consider the grammar for simple assignment statements

 The grammar is ambiguous because the sentence
has two distinct parse trees

Ambiguity

 Two distinct parse trees for the same sentence,

Ambiguity

 Syntactic ambiguity of language structures is a problem
because compilers often base the semantics of those structures
on their syntactic form.

 Specifically, the compiler chooses the code to be generated for a
statement by examining its parse tree.

 If a language structure has more than one parse tree, then the
meaning of the structure cannot be determined uniquely.

 There are several other characteristics of a grammar that are
sometimes useful in determining whether a grammar is
ambiguous

 (1) if the grammar generates a sentence with more than one
leftmost derivation

 (2) if the grammar generates a sentence with more than one
rightmost derivation

Ambiguity

 Some parsing algorithms can be based on ambiguous grammars.

 When such a parser encounters an ambiguous construct, it uses
nongrammatical information provided by the designer to
construct the correct parse tree.

 In many cases, an ambiguous grammar can be rewritten to be
unambiguous but still generate the desired language.

Evaluation of Parse Tree

 Example (solve.py)

solve(tree t):
let t be the parse tree
if t is not null then

if t.info is operand then
return t.info

else
A = solve(t.left)
B = solve(t.right)
return A operator B
where operator is the info contained in t

Operator Precedence

 When an expression includes two different operators, for
example, x + y * z, one obvious semantic issue is the order of
evaluation of the two operators.

 This semantic question can be answered by assigning different
precedence levels to operators.

 For example, if * has been assigned higher precedence than +
 multiplication will be done first, regardless of the order of

appearance of the two operators in the expression.
 A grammar can describe a certain syntactic structure so that

part of the meaning of the structure can be determined from its
parse tree.

 An operator in an arithmetic expression is generated lower in the parse
tree can be used to indicate that it has precedence over an operator
produced higher up in the tree.

Operator Precedence

 Two different parse trees for

Operator Precedence

 The grammar is not ambiguous, the precedence order of its
operators is not the usual one.

 Regardless of the particular operators involved, a parse tree of
sentence has the rightmost operator in the expression at the
lowest point in the parse tree, with the other operators in the tree
moving progressively higher as one moves to the left in the
expression.

 The expression A + B * C, * is the lowest in the tree, indicating it is to
be done first.

 The expression A * B + C, + is the lowest, indicating it is to be done
first.

Operator Precedence

 A grammar can be written for the simple expression regardless
of the order in which the operators appear in an expression.

 The correct ordering is specified by using separate nonterminal
symbols to represent the operands of the operators that have different
precedence.

 Instead of using <expr> for both operands of both + and *, we could use
three nonterminals to represent operands, which allows the grammar to
force different operators to different levels in the parse tree.

 If <expr> is the root symbol for expressions, + can be forced to the top of
the parse tree by having <expr> directly generate only + operators, using
the new nonterminal, <term>, as the right operand of +.

 Next, we can define <term> to generate * operators, using <term> as the
left operand and a new nonterminal, <factor>, as its right operand.

 Now, * will always be lower in the parse tree, simply because it is farther
from the start symbol than + in every derivation.

Operator Precedence

 An unambiguous grammar for expressions

Operator Precedence

 The following derivation of the sentence A = B + C * A

Operator Precedence

 The unique parse tree of the sentence A = B + C * A

An Unambiguous Grammar for if-then-
else

 The BNF rules for an Ada if-then-else statement are as follows:

 If we also have this grammar is ambiguous.

An Unambiguous Grammar for if-then-
else

 The simplest sentential form that illustrates this ambiguity is

An Unambiguous Grammar for if-then-
else

 The simplest sentential form that illustrates this ambiguity is

An Unambiguous Grammar for if-then-
else

 Consider the following
example of this construct:

An Unambiguous Grammar for if-then-
else

 Consider the following
example of this construct:

 The problem is that if the
following tree is used as
the basis for translation,
the else clause would be
executed when done is not
true

An Unambiguous Grammar for if-then-
else

 The rule for if constructs in many languages is that an else
clause, when present, is matched with the nearest previous
unmatched if.

 Therefore, there cannot be an if statement without an else
between a if and its matching else.

 So, for this situation, statements must be distinguished between
those that are matched and those that are unmatched, where
unmatched statements are else-less ifs and all other statements
are matched.

An Unambiguous Grammar for if-then-
else

 The unambiguous grammar based on these ideas follows:

An Unambiguous Grammar for if-then-
else

 There is just one possible parse tree, using this grammar, for the
following sentential form:

	Syntax and Semantics
	Parse Tree
	Parse Tree (cont.)
	Parse Tree (cont.)
	Parse Tree (cont.)
	Ambiguity
	Ambiguity
	Ambiguity
	Ambiguity
	Evaluation of Parse Tree
	Operator Precedence
	Operator Precedence
	Operator Precedence
	Operator Precedence
	Operator Precedence
	Operator Precedence
	Operator Precedence
	An Unambiguous Grammar for if-then-else
	An Unambiguous Grammar for if-then-else
	An Unambiguous Grammar for if-then-else
	An Unambiguous Grammar for if-then-else
	An Unambiguous Grammar for if-then-else
	An Unambiguous Grammar for if-then-else
	An Unambiguous Grammar for if-then-else
	An Unambiguous Grammar for if-then-else

