
Compilation and Interpretation

Lecture 06

Instructor: C. Pu (Ph.D., Assistant Professor)

puc@marshall.edu

Programming Language Implementation

 A programming language implementation is a system for
executing the programs.

 Three general approaches to implementation:
 Compilation

 A compiler transforms a program written in a particular
programming language and turns them into machine language

 Interpretation
 An interpreter executes instructions written in a particular

programming language
 Hybrid

Compilation

 At one extreme, programs can be translated into machine language,
which can be executed directly on the computer.

 This method is called a compiler implementation
 Advantage: very fast program execution, once the translation

process is complete.

 Most production implementation of languages, such as C,
COBOL, and C++, are by compilers.

COBOL

 “Hello World” example program

IDENTIFICATION DIVISION.
PROGRAM-ID. HELLO-WORLD.
PROCEDURE DIVISION.

DISPLAY 'Hello World!’.
STOP RUN.

IDENTIFICATION DIVISION:
 The first mandatory division of every COBOL program. The programmer and

the compiler use this division to identify the program.
 PROGRAM-ID specifies the program name that can consist 1 to 30

characters.

COBOL

 “Hello World” example program

IDENTIFICATION DIVISION.
PROGRAM-ID. HELLO-WORLD.
PROCEDURE DIVISION.

DISPLAY 'Hello World!’.
STOP RUN.

PROCEDURE DIVISION:
 Used to include the logic of the program.
 Consists of executable statements using variables defined in the data division.
 There must be at least one statement in the procedure division.
 The last statement to end the execution in this division is STOP RUN.

C

 “Hello World” example program
#include <stdio.h>
int main() {

/* printf function displays the content that is
* passed between the double quotes.
*/
printf("Hello World");
return 0;

}

 #include <stdio.h> – This statement tells compiler to include this stdio.h file
(library) in the program.

 int main() – Here main() is the function name and int is the return type of
this function.

 return 0; – As mentioned above, the value 0 means successful execution of
main() function.

Compilation Process

source
program

lexical
analyzer

syntax
analyzer

intermediate
code

generator
and semantic

analyzer

optimization
(optional)

symbol
table

code
generator computer results

lexical
units

parse
trees

intermediate
code

machine
language

input data

Compilation Process

Source language:
 The language that a compiler translates

source
program

lexical
analyzer

syntax
analyzer

intermediate
code

generator
and semantic

analyzer

optimization
(optional)

symbol
table

code
generator computer results

lexical
units

parse
trees

intermediate
code

machine
language

input data

Compilation Process (cont.)

Lexical analyzer:
 Gathers the characters of the source program into lexical units

 Lexical units of a program are identifiers, special words, operator, and
punctuation symbols

 Ignores comments in the source program

source
program

lexical
analyzer

syntax
analyzer

intermediate
code

generator
and semantic

analyzer

optimization
(optional)

symbol
table

code
generator computer results

lexical
units

parse
trees

intermediate
code

machine
language

input data

Compilation Process (cont.)

Syntax analyzer:
 Uses lexical units and constructs parse trees

 Parse trees represent the syntactic structure of the program

source
program

lexical
analyzer

syntax
analyzer

intermediate
code

generator
and semantic

analyzer

optimization
(optional)

symbol
table

code
generator computer results

lexical
units

parse
trees

intermediate
code

machine
language

input data

Compilation Process (cont.)

Intermediate code generator:
 Produces a program in a different language, which is at intermediate level between the

source program and the machine code

Semantic analyzer:
 Checks for errors

source
program

lexical
analyzer

syntax
analyzer

intermediate
code

generator
and semantic

analyzer

optimization
(optional)

symbol
table

code
generator computer results

lexical
units

parse
trees

intermediate
code

machine
language

input data

Compilation Process (cont.)

Optimization:
 Improves programs by making them smaller or faster or both

source
program

lexical
analyzer

syntax
analyzer

intermediate
code

generator
and semantic

analyzer

optimization
(optional)

symbol
table

code
generator computer results

lexical
units

parse
trees

intermediate
code

machine
language

input data

Compilation Process (cont.):
Optimization

do
{

item = 10;
value = value + item;

} while (value < 100);

item = 10;
do
{

value = value + item;
} while (value < 100);

This code involves repeated assignment
of the identifier item

This code should save the CPU cycles

Compilation Process (cont.)

Symbol table:
 Serves as a database for the compilation process

 Type and attribute information of each user-defined name in the program

source
program

lexical
analyzer

syntax
analyzer

intermediate
code

generator
and semantic

analyzer

optimization
(optional)

symbol
table

code
generator computer results

lexical
units

parse
trees

intermediate
code

machine
language

input data

Compilation Process (cont.)

Code generator:
 Translates the optimized intermediate code version of the program into an equivalent

machine language program (or machine code)

source
program

lexical
analyzer

syntax
analyzer

intermediate
code

generator
and semantic

analyzer

optimization
(optional)

symbol
table

code
generator computer results

lexical
units

parse
trees

intermediate
code

machine
language

input data

Compilation Process (cont.)

Computer:
 Requires programs from the operating system

 Input and output programs

source
program

lexical
analyzer

syntax
analyzer

intermediate
code

generator
and semantic

analyzer

optimization
(optional)

symbol
table

code
generator computer results

lexical
units

parse
trees

intermediate
code

machine
language

input data

Interpretation

 Interpretation
 Programs are interpreted by another program called an

interpreter, with no translation whatever.
 Interpreter acts as a software simulation of a machine whose fetch-

execute cycle deals with high-level language program statements
rather than machine instructions.

 Advantage of interpretation
 Easy implementation of many source-level debugging operations.

 For example, array index out of range
 Disadvantages of pure interpretation

 Execution is 10 to 100 times slower than in compiled systems.
 The primary source of this slowness is the decoding of the

high-level language statements.
 Regardless of how many times a statements is executed, it

must be decoded ever time.

Interpretation Process

source
program

input data

interpreter results

Hybrid

 Implementation is a compromise between compilers and
interpreters

 Translate high-level language programs to an intermediate language
designed to allow easy interpretation.

 Faster than interpretation because the source language
statements are decoded only once.

 The process of hybrid implementation

source
program

lexical
analyzer

syntax
analyzer

intermediate
code

generator

lexical
units

parse
trees interpreter

intermediate
code

input data

results

Note:
Instead of translating intermediate language code to machine code, it simply
interprets the intermediate code.

Hybrid:
Perl Programming Language

 Perl is implemented with a hybrid system
 Perl program are partially compiled to detect errors before

interpretation and to simplify the interpreter

use strict;
use warnings;
print "Hello World\n";
print 23, "\n";

Implementation Strategies in Practice

 Library of routines and linking
 Compiler uses a linker program to merge the appropriate library of

subroutines (e.g., math functions such as sin, cos, etc.) into the final
program

compilerFortran program
linker

library routines

incomplete
machine
language
program

machine
language
program

Implementation Strategies in Practice

 Post-compilation Assembly
 Facilitates debugging
 Isolates the compiler from changes in the format of machine

language files

compilersource program assemblerassembly
language

machine
language

Implementation Strategies in Practice

 C preprocessor
 Removes comments and white space
 Expands abbreviations in the style of a macro
 Open file content

preprocessorsource program compiler
modified
source

program

assembly
language

	Compilation and Interpretation
	Programming Language Implementation
	Compilation
	COBOL
	COBOL
	C
	Compilation Process
	Compilation Process
	Compilation Process (cont.)
	Compilation Process (cont.)
	Compilation Process (cont.)
	Compilation Process (cont.)
	Compilation Process (cont.):�Optimization
	Compilation Process (cont.)
	Compilation Process (cont.)
	Compilation Process (cont.)
	Interpretation
	Interpretation Process
	Hybrid
	Hybrid:�Perl Programming Language
	Implementation Strategies in Practice
	Implementation Strategies in Practice
	Implementation Strategies in Practice

