
Lexical and Syntax Analysis

Lecture 07

Instructor: C. Pu (Ph.D., Assistant Professor)

puc@marshall.edu

Introduction

 Three different approaches to implementing programming
languages are introduced

 Compilation
 Pure interpretation
 Hybrid implementation

Introduction

 The compilation approach uses a program called a compiler
 Translates programs written in a high-level programming language

into machine code

 Compilation is typically used to implement programming
languages that are used for large applications

 For example, languages such as C++ and COBOL

Introduction

 Pure interpretation systems perform no translation; rather,
programs are interpreted in their original form by a software
interpreter

 Pure interpretation is usually used for smaller systems in which
execution efficiency is not critical

 For example, scripts embedded in HTML documents, written in
languages such as JavaScript

Introduction

 Hybrid implementation systems translate programs written in
high-level languages into intermediate forms, which are
interpreted

 These systems are now more widely used than ever
 Traditionally, hybrid systems have resulted in much slower program

execution than compiler systems
 However, in recent years the use of Just-in-Time (JIT) compilers

has become widespread, particularly for Java programs and
programs written for the Microsoft .NET system

 A JIT compiler, which translates intermediate code to machine code,
is used on methods at the time they are first called

 In effect, a JIT compiler transforms a hybrid system to a delayed
compiler system

Introduction

 All three of the implementation approaches just discussed use
both lexical and syntax analyzers

 Syntax analyzers, or parsers, are nearly always based on a formal
description of the syntax of programs. The most commonly used
syntax-description formalism is context-free grammars, or BNF

 Using BNF, as opposed to using some informal syntax description,
has at least three compelling advantages

 First, BNF descriptions of the syntax of programs are clear and
concise, both for humans and for software systems that use them

 Second, the BNF description can be used as the direct basis for the
syntax analyzer

 Third, implementations based on BNF are relatively easy to
maintain because of their modularity

Introduction

 Nearly all compilers separate the task of analyzing syntax into
two distinct parts

 Lexical analysis
 Syntax analysis

 The lexical analyzer deals with small-scale language constructs,
such as names and numeric literals

 The syntax analyzer deals with the large-scale constructs, such as
expressions, statements, and program units

Introduction

 There are three reasons why lexical analysis is separated from
syntax analysis

 Simplicity
 Techniques for lexical analysis are less complex than those

required for syntax analysis, so the lexical-analysis process can
be simpler if it is separate

 Also, removing the low-level details of lexical analysis from the
syntax analyzer makes the syntax analyzer both smaller and less
complex

Introduction

 There are three reasons why lexical analysis is separated from
syntax analysis

 Efficiency
 Although it pays to optimize the lexical analyzer, because lexical

analysis requires a significant portion of total compilation time,
it is not fruitful to optimize the syntax analyzer.

 Separation facilitates this selective optimization.

Introduction

 There are three reasons why lexical analysis is separated from
syntax analysis

 Portability
 Because the lexical analyzer reads input program files and often

includes buffering of that input, it is somewhat platform
dependent.

 However, the syntax analyzer can be platform independent.
 It is always good to isolate machine-dependent parts of any

software system.

Lexical Analysis

 A lexical analyzer is essentially a pattern matcher
 A pattern matcher attempts to find a substring of a given string of

characters that matches a given character pattern
 Pattern matching is a traditional part of computing
 One of the earliest uses of pattern matching was with text

editors, such as the ed line editor, which was introduced in an
early version of UNIX

 Since then, pattern matching has found its way into some
programming languages

 For example, Perl and JavaScript
 It is also available through the standard class libraries of Java,

C++, and C#

Lexical Analysis

 A lexical analyzer serves as the front end of a syntax analyzer
 Technically, lexical analysis is a part of syntax analysis

 A lexical analyzer performs syntax analysis at the lowest level of
program structure

 An input program appears to a compiler as a single string of
characters

 The lexical analyzer collects characters into logical groupings and
assigns internal codes to the groupings according to their structure

 These logical groupings are named lexemes
 The internal codes for categories of these groupings are named

tokens
 Lexemes are recognized by matching the input character string

against character string patterns

Lexical Analysis

 Consider the following example of an assignment statement

 Following are the tokens and lexemes of this statement

Lexical Analysis

 Lexical analyzers extract lexemes from a given input string and
produce the corresponding tokens

 In the early days of compilers, lexical analyzers often processed an
entire source program file and produced a file of tokens and
lexemes

 Now, however, most lexical analyzers are subprograms that
locate the next lexeme in the input, determine its associated
token code, and return them to the caller, which is the syntax
analyzer

 Each call to the lexical analyzer returns a single lexeme and its
token

 The only view of the input program seen by the syntax analyzer is
the output of the lexical analyzer, one token at a time

Lexical Analysis

 The lexical-analysis process includes skipping comments and
white space outside lexemes, as they are not relevant to the
meaning of the program

 Also, the lexical analyzer inserts lexemes for user-defined names
into the symbol table, which is used by later phases of the
compiler

 Finally, lexical analyzers detect syntactic errors in tokens, such as
ill-formed floating-point literals, and report such errors to the
user

Lexical Analysis

 A state transition diagram, or just state diagram, is a directed
graph

 The nodes of a state diagram are labeled with state names
 The arcs are labeled with the input characters that cause the

transitions among the states
 An arc may also include actions the lexical analyzer must

perform when the transition is taken
 State diagrams of the form used for lexical analyzers are

representations of a class of mathematical machines called finite
automata

 Finite automata can be designed to recognize members of a class of
languages called regular languages

Lexical Analysis

 We now illustrate lexical-analyzer construction with a state
diagram and the code that implements it

 The state diagram could simply include states and transitions for
each and every token pattern

 However, that approach results in a very large and complex
diagram, because every node in the state diagram would need a
transition for every character in the character set of the
language being analyzed

 We therefore consider ways to simplify it.

Lexical Analysis

 Suppose we need a lexical analyzer that recognizes only
arithmetic expressions, including variable names and integer
literals as operands

 Assume that the variable names consist of strings of uppercase
letters, lowercase letters, and digits but must begin with a letter

 Names have no length limitation

Lexical Analysis

 The first thing to observe is that there are 52 different
characters (any uppercase or lowercase letter) that can begin a
name, which would require 52 transitions from the transition
diagram’s initial state

 However, a lexical analyzer is interested only in determining that it
is a name and is not concerned with which specific name it happens
to be

 Therefore, we define a character class named LETTER for all 52
letters and use a single transition on the first letter of any name

Lexical Analysis

 Another opportunity for simplifying the transition diagram is
with the integer literal tokens

 There are 10 different characters that could begin an integer literal
lexeme

 This would require 10 transitions from the start state of the
state diagram

 Because specific digits are not a concern of the lexical analyzer, we
can build a much more compact state diagram if we define a
character class named DIGIT for digits and use a single transition
on any character in this character class to a state that collects
integer literals

 Because our names can include digits, the transition from the node
following the first character of a name can use a single transition on
LETTER or DIGIT to continue collecting the characters of a name.

Lexical Analysis

 Next, we define some utility subprograms for the common tasks
inside the lexical analyzer

 First, we need a subprogram, which we can name getChar, that has
several duties

 When called, getChar gets the next character of input from the
input program and puts it in the global variable nextChar

 getChar must also determine the character class of the input
character and put it in the global variable charClass

 The lexeme being built by the lexical analyzer, which could be
implemented as a character string or an array, will be named
lexeme

Lexical Analysis

 We implement the process of putting the character in nextChar
into the string array lexeme in a subprogram named addChar

 This subprogram must be explicitly called because programs include
some characters that need not be put in lexeme, for example the
white-space characters between lexemes

 In a more realistic lexical analyzer, comments also would not be
placed in lexeme

Lexical Analysis

 When the lexical analyzer is called, it is convenient if the next
character of input is the first character of the next lexeme

 Because of this, a function named getNonBlank is used to skip
white space every time the analyzer is called

Lexical Analysis

 Finally, a subprogram named lookup is needed to compute the
token code for the single-character tokens

 In our example, these are parentheses and the arithmetic operators

 Token codes are numbers arbitrarily assigned to tokens by the
compiler writer

Lexical Analysis

 The state diagram describes the patterns for our tokens

Lexical Analysis

 The following is a C implementation of a lexical analyzer specified in
the state diagram, including a main driver function for testing purposes

 front.c
 Consider the following expression:

 Following is the output of the lexical analyzer of front.c when used on
this expression

	Lexical and Syntax Analysis
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	Lexical Analysis
	Lexical Analysis
	Lexical Analysis
	Lexical Analysis
	Lexical Analysis
	Lexical Analysis
	Lexical Analysis
	Lexical Analysis
	Lexical Analysis
	Lexical Analysis
	Lexical Analysis
	Lexical Analysis
	Lexical Analysis
	Lexical Analysis
	Lexical Analysis
	Lexical Analysis

