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Introduction

 Three different approaches to implementing programming
languages are introduced

 Compilation
 Pure interpretation
 Hybrid implementation



Introduction

 The compilation approach uses a program called a compiler
 Translates programs written in a high-level programming language

into machine code

 Compilation is typically used to implement programming
languages that are used for large applications

 For example, languages such as C++ and COBOL



Introduction

 Pure interpretation systems perform no translation; rather,
programs are interpreted in their original form by a software
interpreter

 Pure interpretation is usually used for smaller systems in which
execution efficiency is not critical

 For example, scripts embedded in HTML documents, written in
languages such as JavaScript



Introduction

 Hybrid implementation systems translate programs written in
high-level languages into intermediate forms, which are
interpreted

 These systems are now more widely used than ever
 Traditionally, hybrid systems have resulted in much slower program

execution than compiler systems
 However, in recent years the use of Just-in-Time ( JIT) compilers

has become widespread, particularly for Java programs and
programs written for the Microsoft .NET system

 A JIT compiler, which translates intermediate code to machine code,
is used on methods at the time they are first called

 In effect, a JIT compiler transforms a hybrid system to a delayed
compiler system



Introduction

 All three of the implementation approaches just discussed use
both lexical and syntax analyzers

 Syntax analyzers, or parsers, are nearly always based on a formal
description of the syntax of programs. The most commonly used
syntax-description formalism is context-free grammars, or BNF

 Using BNF, as opposed to using some informal syntax description,
has at least three compelling advantages

 First, BNF descriptions of the syntax of programs are clear and
concise, both for humans and for software systems that use them

 Second, the BNF description can be used as the direct basis for the
syntax analyzer

 Third, implementations based on BNF are relatively easy to
maintain because of their modularity



Introduction

 Nearly all compilers separate the task of analyzing syntax into
two distinct parts

 Lexical analysis
 Syntax analysis

 The lexical analyzer deals with small-scale language constructs,
such as names and numeric literals

 The syntax analyzer deals with the large-scale constructs, such as
expressions, statements, and program units



Introduction

 There are three reasons why lexical analysis is separated from
syntax analysis

 Simplicity
 Techniques for lexical analysis are less complex than those

required for syntax analysis, so the lexical-analysis process can
be simpler if it is separate

 Also, removing the low-level details of lexical analysis from the
syntax analyzer makes the syntax analyzer both smaller and less
complex



Introduction

 There are three reasons why lexical analysis is separated from
syntax analysis

 Efficiency
 Although it pays to optimize the lexical analyzer, because lexical

analysis requires a significant portion of total compilation time,
it is not fruitful to optimize the syntax analyzer.

 Separation facilitates this selective optimization.



Introduction

 There are three reasons why lexical analysis is separated from
syntax analysis

 Portability
 Because the lexical analyzer reads input program files and often

includes buffering of that input, it is somewhat platform
dependent.

 However, the syntax analyzer can be platform independent.
 It is always good to isolate machine-dependent parts of any

software system.



Lexical Analysis

 A lexical analyzer is essentially a pattern matcher
 A pattern matcher attempts to find a substring of a given string of

characters that matches a given character pattern
 Pattern matching is a traditional part of computing
 One of the earliest uses of pattern matching was with text

editors, such as the ed line editor, which was introduced in an
early version of UNIX

 Since then, pattern matching has found its way into some
programming languages

 For example, Perl and JavaScript
 It is also available through the standard class libraries of Java,

C++, and C#



Lexical Analysis

 A lexical analyzer serves as the front end of a syntax analyzer
 Technically, lexical analysis is a part of syntax analysis

 A lexical analyzer performs syntax analysis at the lowest level of
program structure

 An input program appears to a compiler as a single string of
characters

 The lexical analyzer collects characters into logical groupings and
assigns internal codes to the groupings according to their structure

 These logical groupings are named lexemes
 The internal codes for categories of these groupings are named

tokens
 Lexemes are recognized by matching the input character string

against character string patterns



Lexical Analysis

 Consider the following example of an assignment statement

 Following are the tokens and lexemes of this statement



Lexical Analysis

 Lexical analyzers extract lexemes from a given input string and
produce the corresponding tokens

 In the early days of compilers, lexical analyzers often processed an
entire source program file and produced a file of tokens and
lexemes

 Now, however, most lexical analyzers are subprograms that
locate the next lexeme in the input, determine its associated
token code, and return them to the caller, which is the syntax
analyzer

 Each call to the lexical analyzer returns a single lexeme and its
token

 The only view of the input program seen by the syntax analyzer is
the output of the lexical analyzer, one token at a time



Lexical Analysis

 The lexical-analysis process includes skipping comments and
white space outside lexemes, as they are not relevant to the
meaning of the program

 Also, the lexical analyzer inserts lexemes for user-defined names
into the symbol table, which is used by later phases of the
compiler

 Finally, lexical analyzers detect syntactic errors in tokens, such as
ill-formed floating-point literals, and report such errors to the
user



Lexical Analysis

 A state transition diagram, or just state diagram, is a directed
graph

 The nodes of a state diagram are labeled with state names
 The arcs are labeled with the input characters that cause the

transitions among the states
 An arc may also include actions the lexical analyzer must

perform when the transition is taken
 State diagrams of the form used for lexical analyzers are

representations of a class of mathematical machines called finite
automata

 Finite automata can be designed to recognize members of a class of
languages called regular languages



Lexical Analysis

 We now illustrate lexical-analyzer construction with a state
diagram and the code that implements it

 The state diagram could simply include states and transitions for
each and every token pattern

 However, that approach results in a very large and complex
diagram, because every node in the state diagram would need a
transition for every character in the character set of the
language being analyzed

 We therefore consider ways to simplify it.



Lexical Analysis

 Suppose we need a lexical analyzer that recognizes only
arithmetic expressions, including variable names and integer
literals as operands

 Assume that the variable names consist of strings of uppercase
letters, lowercase letters, and digits but must begin with a letter

 Names have no length limitation



Lexical Analysis

 The first thing to observe is that there are 52 different
characters (any uppercase or lowercase letter) that can begin a
name, which would require 52 transitions from the transition
diagram’s initial state

 However, a lexical analyzer is interested only in determining that it
is a name and is not concerned with which specific name it happens
to be

 Therefore, we define a character class named LETTER for all 52
letters and use a single transition on the first letter of any name



Lexical Analysis

 Another opportunity for simplifying the transition diagram is
with the integer literal tokens

 There are 10 different characters that could begin an integer literal
lexeme

 This would require 10 transitions from the start state of the
state diagram

 Because specific digits are not a concern of the lexical analyzer, we
can build a much more compact state diagram if we define a
character class named DIGIT for digits and use a single transition
on any character in this character class to a state that collects
integer literals

 Because our names can include digits, the transition from the node
following the first character of a name can use a single transition on
LETTER or DIGIT to continue collecting the characters of a name.



Lexical Analysis

 Next, we define some utility subprograms for the common tasks
inside the lexical analyzer

 First, we need a subprogram, which we can name getChar, that has
several duties

 When called, getChar gets the next character of input from the
input program and puts it in the global variable nextChar

 getChar must also determine the character class of the input
character and put it in the global variable charClass

 The lexeme being built by the lexical analyzer, which could be
implemented as a character string or an array, will be named
lexeme



Lexical Analysis

 We implement the process of putting the character in nextChar
into the string array lexeme in a subprogram named addChar

 This subprogram must be explicitly called because programs include
some characters that need not be put in lexeme, for example the
white-space characters between lexemes

 In a more realistic lexical analyzer, comments also would not be
placed in lexeme



Lexical Analysis

 When the lexical analyzer is called, it is convenient if the next
character of input is the first character of the next lexeme

 Because of this, a function named getNonBlank is used to skip
white space every time the analyzer is called



Lexical Analysis

 Finally, a subprogram named lookup is needed to compute the
token code for the single-character tokens

 In our example, these are parentheses and the arithmetic operators

 Token codes are numbers arbitrarily assigned to tokens by the
compiler writer



Lexical Analysis

 The state diagram describes the patterns for our tokens



Lexical Analysis

 The following is a C implementation of a lexical analyzer specified in
the state diagram, including a main driver function for testing purposes

 front.c
 Consider the following expression:

 Following is the output of the lexical analyzer of front.c when used on
this expression
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