Names, Bindings, and Scopes

Lecture 08
Instructor: C. Pu (Ph.D., Assistant Professor)

puc@marshall.edu

Introduction

= Imperative programming languages are abstractions of the

underlying Von Neumann computer architecture

o Imperative programming languages:

o Use statements to change program’s state

£ Run statements one by one
o Von Neumann architecture

o Central Processing Unit (CPU)

: Memory (stores data and instructions)

: Input and output mechanism

o External storage

O The architecture’s two primary components

o Memory, which stores both instructions and data
0 Processor, which provides operations for modifying the contents of

the memory :M.

Introduction

m The abstractions in a language for the memory cells of the

machine are variables

O In some cases, the characteristics of the abstractions are very

close to the characteristics of the cells

o An example of this is an integer variable, which is usually
represented directly in one or more bytes of memory.

Little-endian
32-bit integer

0 00000001 00000000 00000000 00000000 | 1 0OAOBOCOD

4 00000010 00000000 00000000 00000000 | 2

8 00000011 00000000 00000000 00000000 | 3 > oD

12 00000100 00000000 00000000 00000000 | 4

16 00000101 00000000 00000000 00000000 | 5 > 0C
> 0B
> |0A

Memory

a
a+l
a+2

at+3

The order of the bytes is called the endianness; left to right is little endian, IM’
because the least significant byte, the byte representing the smallest part of the number, comes first.

0A
0B

0C
0D

Big-endian
32-bit integer

0AOBOCOD |

-

e

-

—
-

Introduction

A variable can be characterized by a collection of properties, or
attributes, the most important of which is type, a fundamental
concept in programming languages.

Designing the data types of a language requires that a variety of
issues be considered.

Among the most important of these issues are the scope and
lifetime of variables.

Names

Before beginning our discussion of variables, the design of one of
the fundamental attributes of variables, names, must be covered.

Names are also associated with subprograms, formal parameters,
and other program constructs.

The term identifier is often used interchangeably with name.

Design Issues

= The following are the primary design issues for names:

¥ Are names case sensitive!
o Are the special words of the language reserved words or
keywords!

Name Forms

= A name is a string of characters used to identify some entity in a
program.
n Fortran 95+ allows up to 31 characters in its names.

It has no more than 31| characters

The first character must be a letter,

The remaining characters, if any, may be letters, digits, or
underscores,

Fortran identifiers are case insensitive. That is, Smith, smith, sMiTh,
SMiTH, smitH are all identical identifiers.

Correct Examples:
MTU, Ml John, Count
l, X
Incorrect Examples:
M.T.U.: only letters, digits, and underscores can be used

R2-D2: same as above IM.

Name Forms

A name is a string of characters used to identify some entity in a
program.

C99 has no length limitation on its internal names, but only the
first 63 are significant.

External names in C99 (those defined outside functions, which
must be handled by the linker) are restricted to 3| characters.

Names in Java, C#, and Ada have no length limit, and all
characters in them are significant.
C++ does not specify a length limit on names, although
implementers sometimes do.

el

Name Forms

Names in most programming languages have the same form:
a letter followed by a string consisting of letters, digits, and
underscore characters ().

In the C-based languages, it has to a large extent been replaced
by the so-called camel notation
All of the words of a multiple-word name except the first are
capitalized, as in myStack
Language-specific conventions,
https://en.wikipedia.org/wiki/Naming convention_(programming)

Note that the use of underscores and mixed case in names is a
programming style issue, not a language design issue.

https://en.wikipedia.org/wiki/Naming_convention_(programming)

Name Forms

All variable names in PHP must begin with a dollar sign.

< ?’php

$txt = "Hello world!";
$x = 5;

$y = 18.5;

?>

Name Forms

In Perl, the special character at the beginning of a variable’s name,
$, @, or %, specifies its type

$, a scalar value

$age = 25; # An integer assignment
$name = "John Paul"; # A string
$salary = 1445.58; # A floating point

print "Age = $age\n";
print "Name = $name\n";
print "Salary = $salary\n";

Name Forms

In Perl, the special character at the beginning of a variable’s name,
$, @, or %, specifies its type

@, an array

@ages = (25, 3@, 408);
@names = ("John Paul", "Lisa", "Kumar");

print "\$ages[®] = $ages[B]\n";
print "\$ages[1l] = $ages[1]\n";
print "\$ages[2] = $ages[2]\n";
print "\$names[B] = $names[B]\n";
print "\$names[1] = %$names[1]\n";
print "\$names[2] = $names[2]\n";

Name Forms

In Perl, the special character at the beginning of a variable’s name,
$, @, or %, specifies its type

%, key/value pair

%data = ("John Paul', 45, 'Lisa', 30, 'Kumar', 48);

print "\$data{'John Paul'} = %$data{'John Paul'}\n";
print "\$data{'Lisa'} = $data{'Lisa"}\n";
print "\$data{ 'Kumar'} = %$data{'Kumar'}\n";

Name Forms

= In Ruby, special characters at the beginning of a variable’s name,
@ or @@, indicate that the variable is an instance or a class
variable, respectively.

Name Forms

O In many languages, notably the C-based languages, uppercase
and lowercase letters in names are distinct; that is, names in

these languages are case sensitive.

o For example, the following three names are distinct in C++: rose,
ROSE, and Rose.

= Jo some people, this is a serious detriment to readability,
because names that look very similar in fact denote different

entities.
o In that sense, case sensitivity violates the design principle that
language constructs that look similar should have similar meanings.
o But in languages whose variable names are case-sensitive, although

Rose and rose look similar, there is no connection between them.

ol

Name Forms

In C, the problems of case sensitivity are avoided by the

convention that variable names do not include uppercase letters.
C library guide:
o http://www.fortran-2000.com/ArnaudRecipes/Cstd/

In Java and C#, however, the problem cannot be escaped because
many of the predefined names include both uppercase and
lowercase letters.

For example, the Java method for converting a string to an integer

value is parselnt, and spellings such as Parselnt and parseint are not
recognized.

ol

http://www.fortran-2000.com/ArnaudRecipes/Cstd/

Special Words

Special words in programming languages are used to make
programs more readable by naming actions to be performed.

They also are used to separate the syntactic parts of statements
and programs.

In most languages, special words are classified as reserved
words, which means they cannot be redefined by programmers,
but in some they are only keywords, which means they can be
redefined.

ol

Special Words

A keyword is a word of a programming language that is special only
in certain contexts.

Fortran is the only remaining widely used language whose special
words are keywords.

In Fortran, the word Integer, when found at the beginning of a
statement and followed by a name, is considered a keyword that
indicates the statement is a declarative statement.

However, if the word Integer is followed by the assignment
operator, it is considered a variable name.

Integer Apple
Integer = 4

Fortran compilers and people reading Fortran programs must distinguish
between names and special words by context. :M-

Special Words

A reserved word is a special word of a programming language that
cannot be used as a name.

As a language design choice, reserved words are better than
keywords because the ability to redefine keywords can be confusing.
For example, in Fortran, one could have the following statements:

Integer Real
Real Integer

These statements declare the program variable Real to be of
Integer type and the variable Integer to be of Real type.

In addition to the strange appearance of these declaration
statements, the appearance of Real and Integer as variable names
elsewhere in the program could be misleading to program readers.

ol

Variables

A program variable is an abstraction of a computer memory
cell or collection of cells.

Programmers often think of variable names as names for
memory locations, but there is much more to a variable than just
a name.

A variable can be characterized as a sextuple of attributes: (name,
address, value, type, lifetime, and scope).

Although this may seem too complicated for such an apparently
simple concept, it provides the clearest way to explain the
various aspects of variables. M

Variables:
Address

The address of a variable is the machine memory address with
which it is associated.

This association is not as simple as it may at first appear.

In many languages, it is possible for the same variable to be
associated with different addresses at different times in the
program.

For example, if a subprogram has a local variable that is allocated
from the run-time stack when the subprogram is called, different

calls may result in that variable having different addresses.
These are in a sense different instantiations of the same variable.

Variables:
Address

The address of a variable is sometimes called its I-value, because
the address is what is required when the name of a variable
appears in the left side of an assignment.

It is possible to have multiple variables that have the same
address.

When more than one variable name can be used to access the
same memory location, the variables are called aliases.

Aliasing is a hindrance to readability because it allows a variable

to have its value changed by an assighment to a different variable.
For example, if variables named total and sum are aliases, any
change to the value of total also changes the value of sum and vice
versa.

Aliasing also makes program verification more difficult.

ol

Variables:
Type

The type of a variable determines the range of values the
variable can store and the set of operations that are defined for
values of the type.

For example, the int type in Java specifies a value range of -
2147483648 to 2147483647 and arithmetic operations for
addition, subtraction, multiplication, division, and modulus.

Variables:
Value

The value of a variable is the contents of the memory cell or
cells associated with the variable.
It is convenient to think of computer memory in terms of
abstract cells, rather than physical cells.
The physical cells, or individually addressable units, of most
contemporary computer memories are byte-size, with a byte
usually being eight bits in length.
This size is too small for most program variables. An abstract
memory cell has the size required by the variable with which it is
associated.
A variable’s value is sometimes called its r-value because it is
what is required when the name of the variable appears in the
right side of an assighment statement.

el

	Names, Bindings, and Scopes
	Introduction
	Introduction
	Introduction
	Names
	Design Issues
	Name Forms
	Name Forms
	Name Forms
	Name Forms
	Name Forms
	Name Forms
	Name Forms
	Name Forms
	Name Forms
	Name Forms
	Special Words
	Special Words
	Special Words
	Variables
	Variables:�Address
	Variables:�Address
	Variables:�Type
	Variables:�Value

