
Names, Bindings, and Scopes

Lecture 09

Instructor: C. Pu (Ph.D., Assistant Professor)

puc@marshall.edu 



The Concept of Binding

 A binding is an association between an attribute and an
entity

 such as between a variable and its type or value, or between an
operation and a symbol.

 The time at which a binding takes place is called binding time.

 Binding and binding times are prominent concepts in the
semantics of programming languages.



The Concept of Binding

 Bindings can take place at language design time, language
implementation time, compile time, load time, link time, or run time.

 Example:
 The asterisk symbol (*) is usually bound to the multiplication

operation at language design time.
 A data type, such as int in C, is bound to a range of possible

values at language implementation time.
 At compile time, a variable in a Java program is bound to a

particular data type.
 A variable may be bound to a storage cell when the program is

loaded into memory.
 A call to a library subprogram is bound to the subprogram code

at link time.



The Concept of Binding

 Consider the following Java assignment statement:

 Some of the bindings and their binding times for the parts of
this assignment statement are as follows:

 The type of count is bound at compile time.
 The set of possible values of count is bound at language

implementation time.
 The meaning of the operator symbol + is bound at language design

time.
 The internal representation of the literal 5 is bound at compiler time.
 The value of count is bound at execution time with this statement.



Binding of Attributes to Variables

 A binding is static if it first occurs before run time begins and
remains unchanged throughout program execution.



Binding of Attributes to Variables

 If the binding first occurs during run time or can change in the
course of program execution, it is called dynamic.



Type Bindings

 Before a variable can be referenced in a program, it must be
bound to a data type.

 The two important aspects of this binding
 How the type is specified
 When the binding takes place

 Types can be specified statically through some form of explicit
or implicit declaration.



Type Bindings:
Static Type Binding

 An explicit declaration is a statement in a program that lists
variable names and specifies that they are a particular type.

 An implicit declaration is a means of associating variables with
types through default conventions, rather than declaration
statements.

 In this case, the first appearance of a variable name in a program
constitutes its implicit declaration.

 Both explicit and implicit declarations create static bindings to
types.

 Most widely used programming languages that use static type
binding exclusively and were designed since the mid-1960s
require explicit declarations of all variables.



Type Bindings:
Static Type Binding

 Implicit variable type binding is done by the language processor,
either a compiler or an interpreter.

 There are several different bases for implicit variable type
bindings.

 The simplest of these is naming conventions.
 In this case, the compiler or interpreter binds a variable to a type

based on the syntactic form of the variable’s name.
 For example in Fortran

 An identifier that appears in a program that is not explicitly declared is
implicitly declared according to the following convention

 If the identifier begins with one of the letters I, J, K, L, M, or N, or
their lowercase versions, it is implicitly declared to be Integer
type;

 Otherwise, it is implicitly declared to be Real type.



Type Bindings:
Static Type Binding

 Another kind of implicit type declarations uses context.

 This is sometimes called type inference.

 In the simpler case, the context is the type of the value
assigned to the variable in a declaration statement.

 For example, in C# a var declaration of a variable must include
an initial value, whose type is made the type of the variable.

 Consider the following declarations:



Type Bindings:
Dynamic Type Binding

 With dynamic type binding, the type of a variable is not specified by a
declaration statement, nor can it be determined by the spelling of its
name.

 Instead, the variable is bound to a type when it is assigned a value in an
assignment statement.

 When the assignment statement is executed, the variable being
assigned is bound to the type of the value of the expression on the
right side of the assignment.

 Such an assignment may also bind the variable to an address and a
memory cell, because different type values may require different
amounts of storage.

 Any variable can be assigned any type value.
 Furthermore, a variable’s type can change any number of times during

program execution.



Type Bindings:
Dynamic Type Binding



Type Bindings:
Dynamic Type Binding

 In Python, Ruby, JavaScript, and PHP, type binding is dynamic.
 For example, a JavaScript script may contain the following

statement:

 Regardless of the previous type of the variable named list, this
assignment causes it to become the name of a single-dimensioned
array of length 2.

 If the statement

 followed the previous example assignment, list would become the
name of a scalar variable.



Scope

 The scope of a variable is the range of statements in which the
variable is visible.

 A variable is visible in a statement if it can be referenced in that
statement.

 The scope rules of a language determine how a particular
occurrence of a name is associated with a variable.

 In particular, scope rules determine how references to variables
declared outside the currently executing subprogram or block
are associated with their declarations and thus their attributes.



Scope

 A variable is local in a program unit or block if it is declared
there.

 The nonlocal variables of a program unit or block are those that
are visible within the program unit or block but are not
declared there.

 Global variables are a special category of nonlocal variables.



Static Scope

 ALGOL 60 introduced the method of binding names to nonlocal
variables called static scoping, which has been copied by many
subsequent imperative languages and many non-imperative
languages as well.

 Static scoping is so named because the scope of a variable can
be statically determined—that is, prior to execution.

 This permits a human program reader (and a compiler) to
determine the type of every variable in the program simply by
examining its source code.



Static Scope

 When the reader of a program finds a reference to a variable,
the attributes of the variable can be determined by finding the
statement in which it is declared.



Static Scope

 In static-scoped languages with nested subprograms, this
process can be thought of in the following way:

 Suppose a reference is made to a variable x in subprogram sub1.
 The correct declaration is found by first searching the declarations

of subprogram sub1.
 If no declaration is found for the variable there, the search

continues in the declarations of the subprogram that declared
subprogram sub1, which is called its static parent.

 If a declaration of x is not found there, the search continues to the
next-larger enclosing unit (the unit that declared sub1’s parent),
and so forth, until a declaration for x is found or the largest unit’s
declarations have been searched without success.

 In that case, an undeclared variable error is reported.



Static Scope

 Consider the following JavaScript function, big, in which the two
functions sub1 and sub2 are nested:

• Under static scoping, the reference to the variable x in sub2
is to the x declared in the procedure big. 

• This is true because the search for x begins in the procedure 
in which the reference occurs, sub2, but no declaration for 
x is found there. 

• The search continues in the static parent of sub2, big, 
where the declaration of x is found. 

• The x declared in sub1 is ignored, because it is not in the 
static ancestry of sub2.



Static Scope

 Consider the following JavaScript function, big, in which the two
functions sub1 and sub2 are nested:

• In some languages that use static scoping, regardless of 
whether nested subprograms are allowed, some variable 
declarations can be hidden from some other code segments. 

• For example, 
• Consider again the function big. The variable x is 

declared in both big and in sub1, which is nested inside 
big. 

• Within sub1, every simple reference to x is to the local 
x. Therefore, the outer x is hidden from sub1.



Blocks

 Many languages allow new static scopes to be defined in the
midst of executable code.

 This powerful concept, introduced in ALGOL 60, allows a section
of code to have its own local variables whose scope is minimized.

 Such variables are typically stack dynamic, so their storage is
allocated when the section is entered and deallocated when the
section is exited.

 Such a section of code is called a block.
 Blocks provide the origin of the phrase block-structured language.



Blocks

 The C-based languages allow any compound statement (a
statement sequence surrounded by matched braces) to have
declarations and thereby define a new scope.

 Such compound statements are called blocks.
 For example, if list were an integer array, one could write



Blocks

 The scopes created by blocks, which could be nested in larger
blocks, are treated exactly like those created by subprograms.

 References to variables in a block that are not declared there are
connected to declarations by searching enclosing scopes (blocks or
subprograms) in order of increasing size.

 Consider the following skeletal C function:



Declaration Order

 In C89, as well as in some other languages, all data declarations
in a function except those in nested blocks must appear at the
beginning of the function.

 However, some languages—for example, C99, C++, Java,
JavaScript, and C#—allow variable declarations to appear
anywhere a statement can appear in a program unit.

 However, in C99, C++, and Java, the scope of all local variables is
from their declarations to the ends of the blocks in which those
declarations appear.

 In C#, the scope of any variable declared in a block is the whole
block.



Scope and Lifetime

 Sometimes the scope and lifetime of a variable appear to be
related.

 For example, consider a variable that is declared in a Java
method that contains no method calls.

 The scope of such a variable is from its declaration to the end of
the method.

 The lifetime of that variable is the period of time beginning when
the method is entered and ending when execution of the method
terminates.



Scope and Lifetime

 This apparent relationship between scope and lifetime does not hold
in other situations.

 In C and C++, for example, a variable that is declared in a function using
the specifier static is statically bound to the scope of that function and
is also statically bound to storage.

 So, its scope is static and local to the function, but its lifetime extends
over the entire execution of the program of which it is a part.


	Names, Bindings, and Scopes
	The Concept of Binding
	The Concept of Binding
	The Concept of Binding
	Binding of Attributes to Variables
	Binding of Attributes to Variables
	Type Bindings
	Type Bindings:�Static Type Binding
	Type Bindings:�Static Type Binding
	Type Bindings:�Static Type Binding
	Type Bindings:�Dynamic Type Binding
	Type Bindings:�Dynamic Type Binding
	Type Bindings:�Dynamic Type Binding
	Scope
	Scope
	Static Scope
	Static Scope
	Static Scope
	Static Scope
	Static Scope
	Blocks
	Blocks
	Blocks
	Declaration Order
	Scope and Lifetime
	Scope and Lifetime

