
Names, Bindings, and Scopes

Lecture 09

Instructor: C. Pu (Ph.D., Assistant Professor)

puc@marshall.edu 



The Concept of Binding

 A binding is an association between an attribute and an
entity

 such as between a variable and its type or value, or between an
operation and a symbol.

 The time at which a binding takes place is called binding time.

 Binding and binding times are prominent concepts in the
semantics of programming languages.



The Concept of Binding

 Bindings can take place at language design time, language
implementation time, compile time, load time, link time, or run time.

 Example:
 The asterisk symbol (*) is usually bound to the multiplication

operation at language design time.
 A data type, such as int in C, is bound to a range of possible

values at language implementation time.
 At compile time, a variable in a Java program is bound to a

particular data type.
 A variable may be bound to a storage cell when the program is

loaded into memory.
 A call to a library subprogram is bound to the subprogram code

at link time.



The Concept of Binding

 Consider the following Java assignment statement:

 Some of the bindings and their binding times for the parts of
this assignment statement are as follows:

 The type of count is bound at compile time.
 The set of possible values of count is bound at language

implementation time.
 The meaning of the operator symbol + is bound at language design

time.
 The internal representation of the literal 5 is bound at compiler time.
 The value of count is bound at execution time with this statement.



Binding of Attributes to Variables

 A binding is static if it first occurs before run time begins and
remains unchanged throughout program execution.



Binding of Attributes to Variables

 If the binding first occurs during run time or can change in the
course of program execution, it is called dynamic.



Type Bindings

 Before a variable can be referenced in a program, it must be
bound to a data type.

 The two important aspects of this binding
 How the type is specified
 When the binding takes place

 Types can be specified statically through some form of explicit
or implicit declaration.



Type Bindings:
Static Type Binding

 An explicit declaration is a statement in a program that lists
variable names and specifies that they are a particular type.

 An implicit declaration is a means of associating variables with
types through default conventions, rather than declaration
statements.

 In this case, the first appearance of a variable name in a program
constitutes its implicit declaration.

 Both explicit and implicit declarations create static bindings to
types.

 Most widely used programming languages that use static type
binding exclusively and were designed since the mid-1960s
require explicit declarations of all variables.



Type Bindings:
Static Type Binding

 Implicit variable type binding is done by the language processor,
either a compiler or an interpreter.

 There are several different bases for implicit variable type
bindings.

 The simplest of these is naming conventions.
 In this case, the compiler or interpreter binds a variable to a type

based on the syntactic form of the variable’s name.
 For example in Fortran

 An identifier that appears in a program that is not explicitly declared is
implicitly declared according to the following convention

 If the identifier begins with one of the letters I, J, K, L, M, or N, or
their lowercase versions, it is implicitly declared to be Integer
type;

 Otherwise, it is implicitly declared to be Real type.



Type Bindings:
Static Type Binding

 Another kind of implicit type declarations uses context.

 This is sometimes called type inference.

 In the simpler case, the context is the type of the value
assigned to the variable in a declaration statement.

 For example, in C# a var declaration of a variable must include
an initial value, whose type is made the type of the variable.

 Consider the following declarations:



Type Bindings:
Dynamic Type Binding

 With dynamic type binding, the type of a variable is not specified by a
declaration statement, nor can it be determined by the spelling of its
name.

 Instead, the variable is bound to a type when it is assigned a value in an
assignment statement.

 When the assignment statement is executed, the variable being
assigned is bound to the type of the value of the expression on the
right side of the assignment.

 Such an assignment may also bind the variable to an address and a
memory cell, because different type values may require different
amounts of storage.

 Any variable can be assigned any type value.
 Furthermore, a variable’s type can change any number of times during

program execution.



Type Bindings:
Dynamic Type Binding



Type Bindings:
Dynamic Type Binding

 In Python, Ruby, JavaScript, and PHP, type binding is dynamic.
 For example, a JavaScript script may contain the following

statement:

 Regardless of the previous type of the variable named list, this
assignment causes it to become the name of a single-dimensioned
array of length 2.

 If the statement

 followed the previous example assignment, list would become the
name of a scalar variable.



Scope

 The scope of a variable is the range of statements in which the
variable is visible.

 A variable is visible in a statement if it can be referenced in that
statement.

 The scope rules of a language determine how a particular
occurrence of a name is associated with a variable.

 In particular, scope rules determine how references to variables
declared outside the currently executing subprogram or block
are associated with their declarations and thus their attributes.



Scope

 A variable is local in a program unit or block if it is declared
there.

 The nonlocal variables of a program unit or block are those that
are visible within the program unit or block but are not
declared there.

 Global variables are a special category of nonlocal variables.



Static Scope

 ALGOL 60 introduced the method of binding names to nonlocal
variables called static scoping, which has been copied by many
subsequent imperative languages and many non-imperative
languages as well.

 Static scoping is so named because the scope of a variable can
be statically determined—that is, prior to execution.

 This permits a human program reader (and a compiler) to
determine the type of every variable in the program simply by
examining its source code.



Static Scope

 When the reader of a program finds a reference to a variable,
the attributes of the variable can be determined by finding the
statement in which it is declared.



Static Scope

 In static-scoped languages with nested subprograms, this
process can be thought of in the following way:

 Suppose a reference is made to a variable x in subprogram sub1.
 The correct declaration is found by first searching the declarations

of subprogram sub1.
 If no declaration is found for the variable there, the search

continues in the declarations of the subprogram that declared
subprogram sub1, which is called its static parent.

 If a declaration of x is not found there, the search continues to the
next-larger enclosing unit (the unit that declared sub1’s parent),
and so forth, until a declaration for x is found or the largest unit’s
declarations have been searched without success.

 In that case, an undeclared variable error is reported.



Static Scope

 Consider the following JavaScript function, big, in which the two
functions sub1 and sub2 are nested:

• Under static scoping, the reference to the variable x in sub2
is to the x declared in the procedure big. 

• This is true because the search for x begins in the procedure 
in which the reference occurs, sub2, but no declaration for 
x is found there. 

• The search continues in the static parent of sub2, big, 
where the declaration of x is found. 

• The x declared in sub1 is ignored, because it is not in the 
static ancestry of sub2.



Static Scope

 Consider the following JavaScript function, big, in which the two
functions sub1 and sub2 are nested:

• In some languages that use static scoping, regardless of 
whether nested subprograms are allowed, some variable 
declarations can be hidden from some other code segments. 

• For example, 
• Consider again the function big. The variable x is 

declared in both big and in sub1, which is nested inside 
big. 

• Within sub1, every simple reference to x is to the local 
x. Therefore, the outer x is hidden from sub1.



Blocks

 Many languages allow new static scopes to be defined in the
midst of executable code.

 This powerful concept, introduced in ALGOL 60, allows a section
of code to have its own local variables whose scope is minimized.

 Such variables are typically stack dynamic, so their storage is
allocated when the section is entered and deallocated when the
section is exited.

 Such a section of code is called a block.
 Blocks provide the origin of the phrase block-structured language.



Blocks

 The C-based languages allow any compound statement (a
statement sequence surrounded by matched braces) to have
declarations and thereby define a new scope.

 Such compound statements are called blocks.
 For example, if list were an integer array, one could write



Blocks

 The scopes created by blocks, which could be nested in larger
blocks, are treated exactly like those created by subprograms.

 References to variables in a block that are not declared there are
connected to declarations by searching enclosing scopes (blocks or
subprograms) in order of increasing size.

 Consider the following skeletal C function:



Declaration Order

 In C89, as well as in some other languages, all data declarations
in a function except those in nested blocks must appear at the
beginning of the function.

 However, some languages—for example, C99, C++, Java,
JavaScript, and C#—allow variable declarations to appear
anywhere a statement can appear in a program unit.

 However, in C99, C++, and Java, the scope of all local variables is
from their declarations to the ends of the blocks in which those
declarations appear.

 In C#, the scope of any variable declared in a block is the whole
block.



Scope and Lifetime

 Sometimes the scope and lifetime of a variable appear to be
related.

 For example, consider a variable that is declared in a Java
method that contains no method calls.

 The scope of such a variable is from its declaration to the end of
the method.

 The lifetime of that variable is the period of time beginning when
the method is entered and ending when execution of the method
terminates.



Scope and Lifetime

 This apparent relationship between scope and lifetime does not hold
in other situations.

 In C and C++, for example, a variable that is declared in a function using
the specifier static is statically bound to the scope of that function and
is also statically bound to storage.

 So, its scope is static and local to the function, but its lifetime extends
over the entire execution of the program of which it is a part.


	Names, Bindings, and Scopes
	The Concept of Binding
	The Concept of Binding
	The Concept of Binding
	Binding of Attributes to Variables
	Binding of Attributes to Variables
	Type Bindings
	Type Bindings:�Static Type Binding
	Type Bindings:�Static Type Binding
	Type Bindings:�Static Type Binding
	Type Bindings:�Dynamic Type Binding
	Type Bindings:�Dynamic Type Binding
	Type Bindings:�Dynamic Type Binding
	Scope
	Scope
	Static Scope
	Static Scope
	Static Scope
	Static Scope
	Static Scope
	Blocks
	Blocks
	Blocks
	Declaration Order
	Scope and Lifetime
	Scope and Lifetime

