
Data Types

Lecture 10

Instructor: C. Pu (Ph.D., Assistant Professor)

puc@marshall.edu 



Introduction

 A data type defines a collection of data values and a set of
predefined operations on those values.

 Computer programs produce results by manipulating data.

 An important factor in determining the ease with which they can
perform this task is how well the data types available in the
language being used match the objects in the real-world of the
problem being addressed.

 Therefore, it is crucial that a language supports an appropriate
collection of data types and structures.



Primitive Data Types

 Data types that are not defined in terms of other types are
called primitive data types.

 Nearly all programming languages provide a set of primitive data
types.

 Some of the primitive types are merely reflections of the
hardware—for example, most integer types.



Integer

 The most common primitive numeric data type is integer.

 Many computers now support several sizes of integers.
 These sizes of integers, and often a few others, are supported by

some programming languages.
 For example,

 Java includes four signed integer sizes: byte, short, int, and long.

 Some languages, for example, C++ and C#, include unsigned
integer types, which are simply types for integer values without
signs.

 https://msdn.microsoft.com/en-us/library/s3f49ktz.aspx

https://msdn.microsoft.com/en-us/library/s3f49ktz.aspx


Integer

 Most integer types are supported directly by the hardware.
 One example of an integer type that is not supported directly by

the hardware is the long integer type of Python.



Complex

 Some programming languages support a complex data type—for
example, Fortran and Python.

 Complex values are represented as ordered pairs of floating-
point values.

 For example, in Python



Decimal

 Most larger computers that are designed to support business
systems applications have hardware support for decimal data types.

 Decimal data types store a fixed number of decimal digits, with the
decimal point at a fixed position in the value.

 These are the primary data types for business data processing and
are therefore essential to C# also have decimal data types.

 For example in C#
 The decimal keyword indicates a 128-bit data type.
 Compared to other floating-point types, the decimal type has

more precision, which makes it appropriate for financial and
monetary calculations.



Boolean Types

 Boolean types are perhaps the simplest of all types.

 Their range of values has only two elements: one for true and
one for false.

 They were introduced in ALGOL 60 and have been included in
most general-purpose languages designed since 1960.



Boolean Types

 One popular exception is C89, in which numeric expressions are
used as conditionals.

 In such expressions, all operands with nonzero values are
considered true, and zero is considered false.

 Although C99 and C++ have a Boolean type, they also allow
numeric expressions to be used as if they were Boolean.

 This is not the case in the subsequent languages, Java and C#.



Character Types

 Character data are stored in computers as numeric coding.

 Traditionally, the most commonly used coding was the 8-bit code
ASCII (American Standard Code for Information Interchange),
which uses the values 0 to 127 to code 128 different characters.

 https://www.ascii-code.com/

 ISO 8859-1 is another 8-bit character code, but it allows 256
different characters.Ada 95+ uses ISO 8859-1.

 https://cs.stanford.edu/people/miles/iso8859.html

https://www.ascii-code.com/
https://cs.stanford.edu/people/miles/iso8859.html


Character Types

 Because of the globalization of business and the need for
computers to communicate with other computers around the
world, the ASCII character set became inadequate.

 In response, in 1991, the Unicode Consortium published the
UCS-2 standard, a 16-bit character set.

 This character code is often called Unicode.

 After 1991, the Unicode Consortium, in cooperation with the
International Standards Organization (ISO), developed a 4-byte
character code named UCS-4, or UTF-32, which is described in
the ISO/IEC 10646 Standard, published in 2000.



Character String Types

 A character string type is one in which the values consist of
sequences of characters.

 Character string constants are used to label output, and the
input and output of all kinds of data are often done in terms of
strings.

 Of course, character strings also are an essential type for all
programs that do character manipulation.



Character String Types:
Strings and Their Operations

 The most common string operations are assignment, catenation,
substring reference, comparison, and pattern matching.

 If strings are not defined as a primitive type, string data is usually
stored in arrays of single characters and referenced as such in
the language.

 This is the approach taken by C and C++.



Character String Types:
Strings and Their Operations

 C and C++ use char arrays to store character strings.
 These languages provide a collection of string operations through

standard libraries.

 Many uses of strings and many of the library functions use the
convention that character strings are terminated with a special
character, null, which is represented with zero.

 The library operations simply carry out their operations until
the null character appears in the string being operated on.

 Library functions that produce strings often supply the null
character.



Character String Types:
Strings and Their Operations

 The character string literals that are built by the compiler also
have the null character.

 For example, consider the following declaration:

 In this example, str is an array of char elements, specifically apples0,
where 0 is the null character.



Character String Types:
Strings and Their Operations

 Some of the most commonly used library functions for character
strings in C and C++ are

 strcpy, which moves strings;



Character String Types:
Strings and Their Operations

 Some of the most commonly used library functions for character
strings in C and C++ are

 strcat, which contenates one given string onto another;



Character String Types:
Strings and Their Operations

 Some of the most commonly used library functions for character
strings in C and C++ are

 strcmp, which lexicographically compares (by the order of their
character codes) two given strings;



Character String Types:
Strings and Their Operations

 Some of the most commonly used library functions for character
strings in C and C++ are

 strlen, which returns the number of characters, not counting the
null, in the given string.



Character String Types:
String Length Options

 There are several design choices regarding the length of string
values.

 First, the length can be static and set when the string is created.
Such a string is called a static length string.

 In Java,
 The String class is immutable, so that once it is created a

String object cannot be changed.
 The String class has a number of methods, some of them appear

to modify strings.
 Since strings are immutable, what these methods really do is

create and return a new string that contains the result of the
operation.



Character String Types:
String Length Options

 The second option is to allow strings to have varying length up
to a declared and fixed maximum set by the variable’s definition,
as exemplified by the strings in C and the C-style strings of C++.

 These are called limited dynamic length strings.
 Such string variables can store any number of characters between

zero and the maximum.



Character String Types:
String Length Options

 The third option is to allow strings to have varying length with
no maximum, as in JavaScript, Perl, and the standard C++ library.

 These are called dynamic length strings.



Array Types

 An array is a homogeneous aggregate of data elements in which
an individual element is identified by its position in the aggregate,
relative to the first element.

 The individual data elements of an array are of the same type.

 References to individual array elements are specified using
subscript expressions.

 If any of the subscript expressions in a reference include
variables, then the reference will require an additional run-time
calculation to determine the address of the memory location
being referenced.



Array Types

 In many languages, such as C, C++, Java, Ada, and C#, all of the
elements of an array are required to be of the same type.

 In these languages, pointers and references are restricted to point
to or reference a single type.

 So the objects or data values being pointed to or referenced are
also of a single type.

 In some other languages, such as JavaScript, Python, and Ruby,
variables are typeless references to objects or data values.

 In these cases, arrays still consist of elements of a single type, but
the elements can reference objects or data values of different types.

 Such arrays are still homogeneous, because the array elements are
of the same type.



Array Types:
Arrays and Indices

 Specific elements of an array are referenced by means of a two-
level syntactic mechanism

 The first part is the aggregate name.
 The second part is a possibly dynamic selector consisting of one or

more items known as subscripts or indices.
 If all of the subscripts in a reference are constants, the selector is

static; otherwise, it is dynamic.
 The selection operation can be thought of as a mapping from the

array name and the set of subscript values to an element in the
aggregate.

 Indeed, arrays are sometimes called finite mappings. Symbolically,
this mapping can be shown as



Array Types:
Arrays and Indices

 The syntax of array references is fairly universal:
 The array name is followed by the list of subscripts, which is

surrounded by either parentheses or brackets.
 In some languages that provide multi-dimensioned arrays as

arrays of arrays, each subscript appears in its own brackets.
 A problem with using parentheses to enclose subscript

expressions is that they often are also used to enclose the
parameters in subprogram calls; this use makes references to
arrays appear exactly like those calls.

 For example, consider the following Ada assignment statement:



Array Types:
Array Initialization

 Some languages provide the means to initialize arrays at the time
their storage is allocated.

 In Fortran 95+, an array can be initialized by assigning it an array
aggregate in its declaration.

 An array aggregate for a single-dimensioned array is a list of
literals delimited by parentheses and slashes.

 For example, we could have

 C, C++, Java, and C# also allow initialization of their arrays, but
with one new twist: In the C declaration



Array Types:
Array Initialization

 Character strings in C and C++ are implemented as arrays of
char.

 These arrays can be initialized to string constants, as in

 Arrays of strings in C and C++ can also be initialized with string
literals.

 In this case, the array is one of pointers to characters.
 For example,



Array Types:
Array Initialization

 In Java, similar syntax is used to define and initialize an array of
references to String objects.

 For example,

 Ada provides two mechanisms for initializing arrays in the
declaration statement:

 by listing them in the order in which they are to be stored
 by directly assigning them to an index position using the =>

operator, which in Ada is called an arrow.
 For example, consider the following:


	Data Types
	Introduction
	Primitive Data Types
	Integer
	Integer
	Complex
	Decimal
	Boolean Types
	Boolean Types
	Character Types
	Character Types
	Character String Types
	Character String Types:�Strings and Their Operations
	Character String Types:�Strings and Their Operations
	Character String Types:�Strings and Their Operations
	Character String Types:�Strings and Their Operations
	Character String Types:�Strings and Their Operations
	Character String Types:�Strings and Their Operations
	Character String Types:�Strings and Their Operations
	Character String Types:�String Length Options
	Character String Types:�String Length Options
	Character String Types:�String Length Options
	Array Types
	Array Types
	Array Types:�Arrays and Indices
	Array Types:�Arrays and Indices
	Array Types:�Array Initialization
	Array Types:�Array Initialization
	Array Types:�Array Initialization

