
Data Types

Lecture 11

Instructor: C. Pu (Ph.D., Assistant Professor)

puc@marshall.edu

Record Types

 A record is an aggregate of data elements in which the individual
elements are identified by names and accessed through offsets
from the beginning of the structure.

 There is frequently a need in programs to model a collection of
data in which the individual elements are not of the same type
or size.

 For example, information about a college student
 Name, student number, grade point average
 A character string for the name
 An integer for the student number
 A floating-point for the grade point average, and so forth

 Records are designed for this kind of need.

Record Types

 It may appear that records and heterogeneous arrays are the
same, but that is not the case.

 The elements of a heterogeneous array are all data objects with
same type.

 The elements of a record are of potentially different sizes and
reside in adjacent memory locations.

Record Types

 In C, C++, and C#, records are supported with the struct data
type.

struct structure_name
{

data_type member1;
data_type member2;
.
.
data_type memeber;

}

struct student
{

int id1;
int id2;
char a;
char b;
float percentage;

};

Record Types

 In C, C++, and C#, records are supported with the struct data
type.

struct student
{

int id1;
int id2;
char a;
char b;
float percentage;

};

The elements of a record are of potentially different sizes
and reside in adjacent memory locations.

Record Types:
Definitions of Records

 The fundamental difference between a record and an array is that
record elements, or fields, are not referenced by index.

 Instead, the fields are named with identifiers, and references to the
fields are made using these identifiers.

 Another difference between arrays and records is that records in
some languages are allowed to include record or unions.

 The COBOL form of a record declaration, which is part of the data
division of a COBOL program, is illustrated in the following example:

01 EMPLOYEE-RECORD.
02 EMPLOYEE-NAME.

05 FIRST PICTURE IS X(20).
05 MIDDLE PICTURE IS X(10).
05 LAST PICTURE IS X(20).

02 HOURLY-RATE PICTURE IS 99V99.

Record Types:
Definitions of Records

 Ada uses a different syntax for records;
 Rather than using the level numbers of COBOL, record structures

are indicated by simply nesting record declarations inside record
declarations.

 In Ada, records cannot be anonymous—they must be named types.
Consider the following Ada declaration:

type Employee_Name_Type is record
First : String (1..20);
Middle : String (1..10);
Last : String (1..20);

end record;
type Employee_Record_Type is record

Employee_Name: Employee_Name_Type;
Hourly_Rate: Float;

end record;
Employee_Record: Employee_Record_Type;

Record Types:
Definitions of Records

 In Java and C#, records can be defined as data classes, with
nested records defined as nested classes.

 Data members of such classes serve as the record fields.
public class Student
{

private String m_name;
private int m_age;
private String m_course;
private String m_year;
private String m_section;

public Student(String name, int age, String course, String year, String section)
{

m_name = name;
m_age = age;
m_course = course;
m_year = year;
m_section = section;

}
…

}

Record Types:
References to Record Fields

 References to the individual fields of records are syntactically
specified by several different methods, two of which name the
desired field and its enclosing records.

 COBOL field references have the form

field_name OF record_name_1 OF . . . OF record_name_n

 The first record named is the smallest or innermost record that
contains the field.

 The next record name in the sequence is that of the record that
contains the previous record, and so forth.

Record Types:
References to Record Fields

 For example, the MIDDLE field in the COBOL record example
above can be referenced with

MIDDLE OF EMPLOYEE-NAME OF EMPLOYEE-RECORD

01 EMPLOYEE-RECORD.
02 EMPLOYEE-NAME.

05 FIRST PICTURE IS X(20).
05 MIDDLE PICTURE IS X(10).
05 LAST PICTURE IS X(20).

02 HOURLY-RATE PICTURE IS 99V99.

Record Types:
References to Record Fields

 Most of the other languages use dot notation for field
references

 The components of the reference are connected with periods.

 Names in dot notation have the opposite order of COBOL
references:

 They use the name of the largest enclosing record first and the field
name last.

Record Types:
References to Record Fields

 For example, the following is a reference to the field Middle in
the earlier Ada record example:

Employee_Record.Employee_Name.Middle

type Employee_Name_Type is record
First : String (1..20);
Middle : String (1..10);
Last : String (1..20);

end record;
type Employee_Record_Type is record

Employee_Name: Employee_Name_Type;
Hourly_Rate: Float;

end record;
Employee_Record: Employee_Record_Type;

Record Types:
References to Record Fields

 C and C++ use this same syntax for referencing the members of
their structures.

struct student
{

int id1;
int id2;
char a;
char b;
float percentage;

};

struct student stu1;

stu1. id1 = 23;

stu1. id2 = 25;

stu1. float = 3.14;

Record Types:
Implementation of Record Types

 The fields of records are stored in adjacent memory locations.

 But because the sizes of the fields are not necessarily the same,
the access method used for arrays is not used for records.

 Instead, the offset address, relative to the beginning of the
record, is associated with each field.

 Field accesses are all handled using these offsets.

Tuple Types

 A tuple is a data type that is similar to a record, except that the
elements are not named.

 Python includes an immutable tuple type.
 If a tuple needs to be changed, it can be converted to an array with

the list function.
 After the change, it can be converted back to a tuple with the tuple

function.

 One use of tuples is when an array must be write protected,
 When it is sent as a parameter to an external function and the user

does not want the function to be able to modify the parameter.

Tuple Types

 Python’s tuples are closely related to its lists, except that tuples
are immutable.

 A tuple is created by assigning a tuple literal, as in the following
example:

myTuple = (3, 5.8, 'apple')

 The elements of a tuple can be referenced with indexing in
brackets, as in the following:

myTuple[1]

 This references the second element of the tuple, because tuple
indexing begins at 0.

Tuple Types

 Tuples can be contenated with the plus (+) operator.

 They can be deleted with the del statement.

 There are also other operators and functions that operate on
tuples.

Tuple Types

 ML includes a tuple data type.

 An ML tuple must have at least two elements, whereas Python’s
tuples can be empty or contain one element.

 As in Python, an ML tuple can include elements of mixed types.

 The following statement creates a tuple:

val myTuple = (3, 5.8, 'apple');

Tuple Types

 The syntax of a tuple element access is as follows:

#1(myTuple);

 This references the first element of the tuple.

 A new tuple type can be defined in ML with a type declaration,
such as the following:

type intReal = int * real;

List Types

 Lists were first supported in the first functional programming
language, LISP.

 They have always been part of the functional languages, but in
recent years they have found their way into some imperative
languages.

 Lists in Scheme and Common LISP are delimited by parentheses
and the elements are not separated by any punctuation.

 For example,
(A B C D)

 Nested lists have the same form, so we could have
(A (B C) D)

List Types

 Data and code have the same syntactic form in LISP and its
descendants.

 If the list (A B C) is interpreted as code, it is a call to the function A
with parameters B and C.

 The fundamental list operations in Scheme are two functions
that take lists apart and that build lists.

 The CAR function returns the first element of its list parameter.

 For example, consider the following example:
(CAR '(A B C))

List Types

 The CDR function returns its parameter list minus its first
element.

 For example, consider the following example:
(CDR '(A B C))

 This function call returns the list (B C).

Union Types

 A union is a type whose variables may store different type
values at different times during program execution.

 Difference between Struct and Union

Union Types:
Discriminated Versus Free Unions

 C and C++ provide union constructs
in which there is no language support
for type checking.

 In C and C++, the union construct is
used to specify union structures.

 The unions in these languages are
called free unions, because
programmers are allowed complete
freedom from type checking in their
use.

 For example, consider the following C
union:

union flexType {
int intEl;
float floatEl;

};
union flexType el1;
float x;
. . .
el1.intEl = 27;
x = el1.floatEl;

Pointer and Reference Types

 A pointer type is one in which the variables have a range of
values that consists of memory addresses.

 Languages that provide a pointer type usually include two
fundamental pointer operations: assignment and dereferencing.

 The first operation sets a pointer variable’s value to some useful
address.

 The second operation is used to access or manipulate data
contained in memory location pointed to by a pointer.

Pointer and Reference Types:
Pointer Operations

 In C++, it is explicitly
specified with the
asterisk (*) as a prefix
unary operator.

 Consider the following
example of dereferencing:

 If ptr is a pointer variable
with the value 7080 and
the cell whose address is
7080 has the value 206,
then the assignment

j = *ptr

	Data Types
	Record Types
	Record Types
	Record Types
	Record Types
	Record Types:�Definitions of Records
	Record Types:�Definitions of Records
	Record Types:�Definitions of Records
	Record Types:�References to Record Fields
	Record Types:�References to Record Fields
	Record Types:�References to Record Fields
	Record Types:�References to Record Fields
	Record Types:�References to Record Fields
	Record Types:�Implementation of Record Types
	Tuple Types
	Tuple Types
	Tuple Types
	Tuple Types
	Tuple Types
	List Types
	List Types
	List Types
	Union Types
	Union Types:�Discriminated Versus Free Unions
	Pointer and Reference Types
	Pointer and Reference Types:�Pointer Operations

