
Data Types

Lecture 11

Instructor: C. Pu (Ph.D., Assistant Professor)

puc@marshall.edu

Record Types

 A record is an aggregate of data elements in which the individual
elements are identified by names and accessed through offsets
from the beginning of the structure.

 There is frequently a need in programs to model a collection of
data in which the individual elements are not of the same type
or size.

 For example, information about a college student
 Name, student number, grade point average
 A character string for the name
 An integer for the student number
 A floating-point for the grade point average, and so forth

 Records are designed for this kind of need.

Record Types

 It may appear that records and heterogeneous arrays are the
same, but that is not the case.

 The elements of a heterogeneous array are all data objects with
same type.

 The elements of a record are of potentially different sizes and
reside in adjacent memory locations.

Record Types

 In C, C++, and C#, records are supported with the struct data
type.

struct structure_name
{

data_type member1;
data_type member2;
.
.
data_type memeber;

}

struct student
{

int id1;
int id2;
char a;
char b;
float percentage;

};

Record Types

 In C, C++, and C#, records are supported with the struct data
type.

struct student
{

int id1;
int id2;
char a;
char b;
float percentage;

};

The elements of a record are of potentially different sizes
and reside in adjacent memory locations.

Record Types:
Definitions of Records

 The fundamental difference between a record and an array is that
record elements, or fields, are not referenced by index.

 Instead, the fields are named with identifiers, and references to the
fields are made using these identifiers.

 Another difference between arrays and records is that records in
some languages are allowed to include record or unions.

 The COBOL form of a record declaration, which is part of the data
division of a COBOL program, is illustrated in the following example:

01 EMPLOYEE-RECORD.
02 EMPLOYEE-NAME.

05 FIRST PICTURE IS X(20).
05 MIDDLE PICTURE IS X(10).
05 LAST PICTURE IS X(20).

02 HOURLY-RATE PICTURE IS 99V99.

Record Types:
Definitions of Records

 Ada uses a different syntax for records;
 Rather than using the level numbers of COBOL, record structures

are indicated by simply nesting record declarations inside record
declarations.

 In Ada, records cannot be anonymous—they must be named types.
Consider the following Ada declaration:

type Employee_Name_Type is record
First : String (1..20);
Middle : String (1..10);
Last : String (1..20);

end record;
type Employee_Record_Type is record

Employee_Name: Employee_Name_Type;
Hourly_Rate: Float;

end record;
Employee_Record: Employee_Record_Type;

Record Types:
Definitions of Records

 In Java and C#, records can be defined as data classes, with
nested records defined as nested classes.

 Data members of such classes serve as the record fields.
public class Student
{

private String m_name;
private int m_age;
private String m_course;
private String m_year;
private String m_section;

public Student(String name, int age, String course, String year, String section)
{

m_name = name;
m_age = age;
m_course = course;
m_year = year;
m_section = section;

}
…

}

Record Types:
References to Record Fields

 References to the individual fields of records are syntactically
specified by several different methods, two of which name the
desired field and its enclosing records.

 COBOL field references have the form

field_name OF record_name_1 OF . . . OF record_name_n

 The first record named is the smallest or innermost record that
contains the field.

 The next record name in the sequence is that of the record that
contains the previous record, and so forth.

Record Types:
References to Record Fields

 For example, the MIDDLE field in the COBOL record example
above can be referenced with

MIDDLE OF EMPLOYEE-NAME OF EMPLOYEE-RECORD

01 EMPLOYEE-RECORD.
02 EMPLOYEE-NAME.

05 FIRST PICTURE IS X(20).
05 MIDDLE PICTURE IS X(10).
05 LAST PICTURE IS X(20).

02 HOURLY-RATE PICTURE IS 99V99.

Record Types:
References to Record Fields

 Most of the other languages use dot notation for field
references

 The components of the reference are connected with periods.

 Names in dot notation have the opposite order of COBOL
references:

 They use the name of the largest enclosing record first and the field
name last.

Record Types:
References to Record Fields

 For example, the following is a reference to the field Middle in
the earlier Ada record example:

Employee_Record.Employee_Name.Middle

type Employee_Name_Type is record
First : String (1..20);
Middle : String (1..10);
Last : String (1..20);

end record;
type Employee_Record_Type is record

Employee_Name: Employee_Name_Type;
Hourly_Rate: Float;

end record;
Employee_Record: Employee_Record_Type;

Record Types:
References to Record Fields

 C and C++ use this same syntax for referencing the members of
their structures.

struct student
{

int id1;
int id2;
char a;
char b;
float percentage;

};

struct student stu1;

stu1. id1 = 23;

stu1. id2 = 25;

stu1. float = 3.14;

Record Types:
Implementation of Record Types

 The fields of records are stored in adjacent memory locations.

 But because the sizes of the fields are not necessarily the same,
the access method used for arrays is not used for records.

 Instead, the offset address, relative to the beginning of the
record, is associated with each field.

 Field accesses are all handled using these offsets.

Tuple Types

 A tuple is a data type that is similar to a record, except that the
elements are not named.

 Python includes an immutable tuple type.
 If a tuple needs to be changed, it can be converted to an array with

the list function.
 After the change, it can be converted back to a tuple with the tuple

function.

 One use of tuples is when an array must be write protected,
 When it is sent as a parameter to an external function and the user

does not want the function to be able to modify the parameter.

Tuple Types

 Python’s tuples are closely related to its lists, except that tuples
are immutable.

 A tuple is created by assigning a tuple literal, as in the following
example:

myTuple = (3, 5.8, 'apple')

 The elements of a tuple can be referenced with indexing in
brackets, as in the following:

myTuple[1]

 This references the second element of the tuple, because tuple
indexing begins at 0.

Tuple Types

 Tuples can be contenated with the plus (+) operator.

 They can be deleted with the del statement.

 There are also other operators and functions that operate on
tuples.

Tuple Types

 ML includes a tuple data type.

 An ML tuple must have at least two elements, whereas Python’s
tuples can be empty or contain one element.

 As in Python, an ML tuple can include elements of mixed types.

 The following statement creates a tuple:

val myTuple = (3, 5.8, 'apple');

Tuple Types

 The syntax of a tuple element access is as follows:

#1(myTuple);

 This references the first element of the tuple.

 A new tuple type can be defined in ML with a type declaration,
such as the following:

type intReal = int * real;

List Types

 Lists were first supported in the first functional programming
language, LISP.

 They have always been part of the functional languages, but in
recent years they have found their way into some imperative
languages.

 Lists in Scheme and Common LISP are delimited by parentheses
and the elements are not separated by any punctuation.

 For example,
(A B C D)

 Nested lists have the same form, so we could have
(A (B C) D)

List Types

 Data and code have the same syntactic form in LISP and its
descendants.

 If the list (A B C) is interpreted as code, it is a call to the function A
with parameters B and C.

 The fundamental list operations in Scheme are two functions
that take lists apart and that build lists.

 The CAR function returns the first element of its list parameter.

 For example, consider the following example:
(CAR '(A B C))

List Types

 The CDR function returns its parameter list minus its first
element.

 For example, consider the following example:
(CDR '(A B C))

 This function call returns the list (B C).

Union Types

 A union is a type whose variables may store different type
values at different times during program execution.

 Difference between Struct and Union

Union Types:
Discriminated Versus Free Unions

 C and C++ provide union constructs
in which there is no language support
for type checking.

 In C and C++, the union construct is
used to specify union structures.

 The unions in these languages are
called free unions, because
programmers are allowed complete
freedom from type checking in their
use.

 For example, consider the following C
union:

union flexType {
int intEl;
float floatEl;

};
union flexType el1;
float x;
. . .
el1.intEl = 27;
x = el1.floatEl;

Pointer and Reference Types

 A pointer type is one in which the variables have a range of
values that consists of memory addresses.

 Languages that provide a pointer type usually include two
fundamental pointer operations: assignment and dereferencing.

 The first operation sets a pointer variable’s value to some useful
address.

 The second operation is used to access or manipulate data
contained in memory location pointed to by a pointer.

Pointer and Reference Types:
Pointer Operations

 In C++, it is explicitly
specified with the
asterisk (*) as a prefix
unary operator.

 Consider the following
example of dereferencing:

 If ptr is a pointer variable
with the value 7080 and
the cell whose address is
7080 has the value 206,
then the assignment

j = *ptr

	Data Types
	Record Types
	Record Types
	Record Types
	Record Types
	Record Types:�Definitions of Records
	Record Types:�Definitions of Records
	Record Types:�Definitions of Records
	Record Types:�References to Record Fields
	Record Types:�References to Record Fields
	Record Types:�References to Record Fields
	Record Types:�References to Record Fields
	Record Types:�References to Record Fields
	Record Types:�Implementation of Record Types
	Tuple Types
	Tuple Types
	Tuple Types
	Tuple Types
	Tuple Types
	List Types
	List Types
	List Types
	Union Types
	Union Types:�Discriminated Versus Free Unions
	Pointer and Reference Types
	Pointer and Reference Types:�Pointer Operations

