
Expressions and Assignment Statements

Lecture 12

Instructor: C. Pu (Ph.D., Assistant Professor)

puc@marshall.edu

Arithmetic Expressions

 Automatic evaluation of arithmetic expressions similar to those
found in mathematics, science, and engineering was one of the
primary goals of the first high-level programming languages.

 Most of the characteristics of arithmetic expressions in
programming languages were inherited from conventions that
had evolved in mathematics.

 In programming languages, arithmetic expressions consist of
operators, operands, parentheses, and function calls.

 An operator can be unary, meaning it has a single operand
 An operator can be binary, meaning it has two operands
 An operator can be ternary, meaning it has three operands

Arithmetic Expressions

 Infix, Postfix and Prefix notations are three different but
equivalent ways of writing expressions.

 Infix notation: X +Y
 Operators are written in-between their operands.
 This is the usual way we write expressions.
 Example:A * (B + C) / D

 Postfix notation (also known as "Reverse Polish notation"): XY +
 Operators are written after their operands.
 The infix expression given above is equivalent to A B C + * D /
 The order of evaluation of operators is always left-to-right, and

brackets cannot be used to change this order.
 Prefix notation (also known as "Polish notation"): + XY

 Operators are written before their operands.
 The expressions given above are equivalent to / * A + B C D

Arithmetic Expressions

 The purpose of an arithmetic expression is to specify an
arithmetic computation.

 An implementation of such a computation must cause two
actions:

 Fetching the operands, usually from memory
 Executing arithmetic operations on those operands

Operator Evaluation Order

 The operator precedence and associativity rules of a language
dictate the order of evaluation of its operators.

Operator Evaluation Order:
Precedence

 The value of an expression depends at least in part on the order
of evaluation of the operators in the expression.

 Consider the following expression:

a + b * c

 Suppose the variables a, b, and c have the values 3, 4, and 5,
respectively.

 If evaluated left to right (the addition first and then the
multiplication), the result is 35.

 If evaluated right to left, the result is 23.

Operator Evaluation Order:
Precedence

 Instead of simply evaluating the operators in an expression from
left to right or right to left,

 The concept of placing operators in a hierarchy of evaluation
priorities and basing the evaluation order of expressions partly on
this hierarchy

 For example:
 In mathematics, multiplication is considered to be of higher priority

than addition, perhaps due to its higher level of complexity.
 If that convention were applied in the following example expression,

as would be the case in most programming languages, the
multiplication would be done first.

a + b * c

Operator Evaluation Order:
Precedence

 The operator precedence rules for expression evaluation
partially define the order in which the operators of different
precedence levels are evaluated.

 The operator precedence rules for expressions are based on the
hierarchy of operator priorities, as seen by the language designer.

 The operator precedence rules of the common imperative
languages are nearly all the same, because they are based on
those of mathematics.

 Exponentiation has the highest precedence (when it is provided by
the language), followed by multiplication and division on the same
level, followed by binary addition and subtraction on the same level.

Operator Evaluation Order:
Precedence

 Many languages also include unary versions of addition and
subtraction.

 Unary addition is called the identity operator because it
usually has no associated operation and thus has no effect on its
operand.

 Ellis and Stroustrup (1990, p. 56), speaking about C++, call it a
historical accident and correctly label it useless.

 Unary minus, of course, changes the sign of its operand.
 In Java and C#, unary minus also causes the implicit conversion of

short and byte operands to int type.

Operator Evaluation Order:
Precedence

 In all of the common imperative languages, the unary minus
operator can appear in an expression

 either at the beginning
 or anywhere inside the expression, as long as it is parenthesized to

prevent it from being next to another operator.

 For example,

a + (- b) * c (legal)

a + - b * c (illegal)

Operator Evaluation Order:
Precedence

 Consider the following expressions:

- a / b
- a * b
- a ** b

 In the first two cases, the relative precedence of the unary minus
operator and the binary operator is irrelevant—the order of
evaluation of the two operators has no effect on the value of the
expression.

 In the last case, however, it does matter.

Operator Evaluation Order:
Precedence

 Of the common programming languages, only Fortran, Ruby,
Visual Basic, and Ada have the exponentiation operator.

 In all four, exponentiation has higher precedence than unary
minus, so

- A ** B
is equivalent to

-(A ** B)

Operator Evaluation Order:
Precedence

 The precedence of the arithmetic operators of Ruby and the C-
based languages are as follows:

Ruby C-Based Languages
Highest ** postfix ++, --

unary +, - prefix ++, --, unary +, -
*, /, % *, /, %
Lowest binary +, - binary +, -

 The ** operator is exponentiation.
 The % operator takes two integer operands and yields the

remainder of the first after division by the second.

Operator Evaluation Order:
Associativity

 Consider the following expression:

a - b + c - d

 If the addition and subtraction operators have the same level of
precedence, as they do in programming languages, the precedence
rules say nothing about the order of evaluation of the operators in
this expression.

Operator Evaluation Order:
Associativity

 When an expression contains two adjacent occurrences of
operators with the same level of precedence, the question of
which operator is evaluated first is answered by the
associativity rules of the language.

 An operator can have either left or right associativity, meaning
that when there are two adjacent operators with the same
precedence, the left operator is evaluated first or the right
operator is evaluated first, respectively.

Operator Evaluation Order:
Associativity

 Associativity in common languages is left to right, except that the
exponentiation operator (when provided) sometimes associates
right to left.

 In the Java expression

a - b + c

 the left operator is evaluated first.

Operator Evaluation Order:
Associativity

 Exponentiation in Fortran and Ruby is right associative, so in the
expression

A ** B ** C

 the right operator is evaluated first.

Operator Evaluation Order:
Associativity

 In Ada, exponentiation is nonassociative, which means that the
expression

A ** B ** C

 is illegal.
 Such an expression must be parenthesized to show the desired

order, as in either

(A ** B) ** C

Or

A ** (B ** C)

Operator Evaluation Order:
Associativity

 InVisual Basic, the exponentiation operator, ^, is left associative.

 The associativity rules for a few common languages are given
here:

Language Associativity Rule
Ruby Left: *, /, +, -

Right: **
C-based languages Left: *, /, %, binary +, binary -

Right: ++, --, unary -, unary +
Ada Left: all except **

Nonassociative: **

Operator Evaluation Order:
Associativity

 In APL, all operators have the same level of precedence.
 Thus, the order of evaluation of operators in APL expressions is

determined entirely by the associativity rule, which is right to left
for all operators.

 For example, in the expression

A × B + C

 The addition operator is evaluated first, followed by the
multiplication operator

 If A were 3, B were 4, and C were 5, then the value of this APL
expression would be 27.

	Expressions and Assignment Statements
	Arithmetic Expressions
	Arithmetic Expressions
	Arithmetic Expressions
	Operator Evaluation Order
	Operator Evaluation Order:�Precedence
	Operator Evaluation Order:�Precedence
	Operator Evaluation Order:�Precedence
	Operator Evaluation Order:�Precedence
	Operator Evaluation Order:�Precedence
	Operator Evaluation Order:�Precedence
	Operator Evaluation Order:�Precedence
	Operator Evaluation Order:�Precedence
	Operator Evaluation Order:�Associativity
	Operator Evaluation Order:�Associativity
	Operator Evaluation Order:�Associativity
	Operator Evaluation Order:�Associativity
	Operator Evaluation Order:�Associativity
	Operator Evaluation Order:�Associativity
	Operator Evaluation Order:�Associativity

