
Statement-Level Control Structures

Lecture 13

Instructor: C. Pu (Ph.D., Assistant Professor)

puc@marshall.edu 



Introduction

 Computations in imperative-language programs are
accomplished by

 evaluating expressions
 assigning the resulting values to variables

 At least two additional linguistic mechanisms are necessary to
make the computations in programs flexible and powerful:

 some means of selecting among alternative control flow paths (of
statement execution)

 some means of causing the repeated execution of statements or
sequences of statements

 Statements that provide these kinds of capabilities are called
control statements.



Selection Statements

 A selection statement provides the means of choosing between
two or more execution paths in a program.

 Such statements are fundamental and essential parts of all
programming languages.

 Selection statements fall into two general categories:
 two-way
 n-way or multiple selection



Two-Way Selection Statements:
The Control Expression

 Although the two-way selection statements of contemporary
imperative languages are quite similar, there are some variations
in their designs.

 The general form of a two-way selector is as follows:

if control_expression then
clause

else
clause



Two-Way Selection Statements:
The Control Expression

 Control expressions are specified in parentheses if the then
reserved word (or some other syntactic marker) is not used to
introduce the then clause.

 In those cases where the then reserved word (or alternative
marker) is used, there is less need for the parentheses, so they are
often omitted, as in Ruby.

if number < 0 then
print "Number is negative" E

else
print "Number is non-negative"



Two-Way Selection Statements:
The Control Expression

 In C89, which did not have a Boolean data type, arithmetic
expressions were used as control expressions.

 This can also be done in Python, C99, and C++.
 However, in those languages either arithmetic or Boolean

expressions can be used.

 In other contemporary languages, only Boolean expressions can
be used for control expressions.



Two-Way Selection Statements:
Clause Form

 In many contemporary languages, the then and else clauses
appear as either single statements or compound statements.

 One variation of this is Perl, in which all then and else clauses
must be compound statements, even if they contain single
statements.

if (CONDITION) {
STATEMENT;
...
STATEMENT;

}



Two-Way Selection Statements:
Clause Form

 Many languages use braces to form compound statements, which
serve as the bodies of then and else clauses.

 In Fortran 95, Ada, Python, and Ruby, the then and else clauses
are statement sequences, rather than compound statements.

 The complete selection statement is terminated in these
languages with a reserved word.



Two-Way Selection Statements:
Clause Form

 Python uses indentation to specify compound statements.
 For example,

if x > y :
x = y
print "case 1"

 All statements equally indented are included in the compound
statement.

 Notice that rather than then, a colon is used to introduce the then
clause in Python.



Two-Way Selection Statements:
Nesting Selectors

 We discussed the problem of syntactic ambiguity of a
straightforward grammar for a two-way selector statement.

 That ambiguous grammar was as follows:

<if_stmt> → if <logic_expr> then <stmt>
| if <logic_expr> then <stmt> else <stmt>

 The issue was that when a selection statement is nested in the
then clause of a selection statement, it is not clear to which if an
else clause should be associated.



Two-Way Selection Statements:
Nesting Selectors

 Consider the following Java-like code: (two different
interpretations)

if (sum == 0)
if (count == 0)

result = 0;
else

result = 1;



Two-Way Selection Statements:
Nesting Selectors

 To force the alternative semantics in Java, the inner if is put in a
compound, as in

if (sum == 0) {
if (count == 0)

result = 0;
}
else

result = 1;



Two-Way Selection Statements:
Nesting Selectors

 C, C++, and C# have the same problem as Java with selection
statement nesting.

 Because Perl requires that all then and else clauses be
compound, it does not (because brace is required).

 In Perl, the previous code would be written as

if (sum == 0) {
if (count == 0) {

result = 0;
}

} else {
result = 1;

}



Two-Way Selection Statements:
Nesting Selectors

 If the alternative semantics were needed, it would be

if (sum == 0) {
if (count == 0) {

result = 0;
}
else {

result = 1;
}

}



Two-Way Selection Statements:
Nesting Selectors

 Another way to avoid the issue of nested selection statements is
to use an alternative means of forming compound statements.

 The use of a special word resolves the question of the
semantics of nested selectors and also adds to the readability of
the statement.

 This is the design of the selection statement in Fortran 95+, Ada,
Ruby, and Lua.



Two-Way Selection Statements:
Nesting Selectors

 For example, consider the following Ruby statement:

if a > b then
sum = sum + a
acount = acount + 1

else
sum = sum + b
bcount = bcount + 1

end



Two-Way Selection Statements:
Nesting Selectors

 Recall that in Ruby, the then and else clauses consist of
statement sequences rather than compound statements.

 The first interpretation of the selector example at the beginning
of this lecture, in which the else clause is matched to the nested
if, can be written in Ruby as follows:

if sum == 0 then
if count == 0 then

result = 0
else

result = 1
end

end



Two-Way Selection Statements:
Nesting Selectors

 The second interpretation of the selection statement at the
beginning of this lecture, in which the else clause is matched to
the outer if, can be written in Ruby as follows:

if sum == 0 then
if count == 0 then

result = 0
end

else
result = 1

end



Two-Way Selection Statements:
Nesting Selectors

 The following statement, written in Python, is semantically
equivalent to the last Ruby statement above:

if sum == 0 :
if count == 0 :

result = 0
else :

result = 1



Two-Way Selection Statements:
Multiple-Selection Statements

 The multiple-selection statement allows the selection of one of
any number of statements or statement groups.

 It is, therefore, a generalization of a selector.

 In fact, two-way selectors can be built with a multiple selector.

 The need to choose from among more than two control paths in
a program is common.

 Although a multiple selector can be built from two-way selectors
and gotos, the resulting structures are cumbersome, unreliable,
and difficult to write and read.

 Therefore, the need for a special structure is clear.



Two-Way Selection Statements:
Examples of Multiple Selectors

 The C multiple-selector statement, switch, which is also part of
C++, Java, and JavaScript, is a relatively primitive design.

 Its general form is

switch (expression) {
case constant_expression1: statement1;
. . .
case constantn: statement_n;
[default: statementn+1]

}



Two-Way Selection Statements:
Examples of Multiple Selectors

 The switch statement does not provide implicit branches at the
end of its code segments.

 This allows control to flow through more than one selectable code
segment on a single execution.

 Consider the following example:
index = 1;
switch (index) {

case 1:
case 3: System.out.println("Case 2");
case 2:
case 4: System.out.println("Case 4");
default: System.out.println("Error in switch");

}



Two-Way Selection Statements:
Examples of Multiple Selectors

 The following switch statement uses break to restrict each
execution to a single selectable segment:

index = 1;
switch (index) {

case 1:
case 3: System.out.println("Case 2");

break;
case 2:
case 4: System.out.println("Case 4");

break;
default: System.out.println("Error in switch");

}



Two-Way Selection Statements:
Multiple Selection Using if

 In many situations, a switch or case statement is inadequate for
multiple selection.

 For example, when selections must be made on the basis of a
Boolean expression rather than some ordinal type, nested two-way
selectors can be used to simulate a multiple selector.

 To alleviate the poor readability of deeply nested two-way
selectors, some languages, such as Perl and Python, have been
extended specifically for this use.

 The extension allows some of the special words to be left out.
 In particular, else-if sequences are replaced with a single special

word, and the closing special word on the nested if is dropped.
 The nested selector is then called an else-if clause.



Two-Way Selection Statements:
Multiple Selection Using if

 Consider the following Python selector statement (note that
else-if is spelled elif in Python):

if count < 10 :
bag1 = True

elif count < 100 :
bag2 = True

elif count < 1000 :
bag3 = True



Two-Way Selection Statements:
Multiple Selection Using if

 which is equivalent to the following:

if count < 10 :
bag1 = True

else :
if count < 100 :

bag2 = True
else :

if count < 1000 :
bag3 = True

else :
bag4 = True


	Statement-Level Control Structures
	Introduction
	Selection Statements
	Two-Way Selection Statements:�The Control Expression
	Two-Way Selection Statements:�The Control Expression
	Two-Way Selection Statements:�The Control Expression
	Two-Way Selection Statements:�Clause Form
	Two-Way Selection Statements:�Clause Form
	Two-Way Selection Statements:�Clause Form
	Two-Way Selection Statements:�Nesting Selectors
	Two-Way Selection Statements:�Nesting Selectors
	Two-Way Selection Statements:�Nesting Selectors
	Two-Way Selection Statements:�Nesting Selectors
	Two-Way Selection Statements:�Nesting Selectors
	Two-Way Selection Statements:�Nesting Selectors
	Two-Way Selection Statements:�Nesting Selectors
	Two-Way Selection Statements:�Nesting Selectors
	Two-Way Selection Statements:�Nesting Selectors
	Two-Way Selection Statements:�Nesting Selectors
	Two-Way Selection Statements:�Multiple-Selection Statements
	Two-Way Selection Statements:�Examples of Multiple Selectors
	Two-Way Selection Statements:�Examples of Multiple Selectors
	Two-Way Selection Statements:�Examples of Multiple Selectors
	Two-Way Selection Statements:�Multiple Selection Using if
	Two-Way Selection Statements:�Multiple Selection Using if
	Two-Way Selection Statements:�Multiple Selection Using if

