
Statement-Level Control Structures

Lecture 14

Instructor: C. Pu (Ph.D., Assistant Professor)

puc@marshall.edu 



Iterative Statements

 An iterative statement is one that causes a statement or
collection of statements to be executed zero, one, or more times.

 An iterative statement is often called a loop.



Iterative Statements:
Counter-Controlled Loops

 A counting iterative control statement has a variable, called the
loop variable, in which the count value is maintained.

 It also includes some means of specifying the initial and
terminal values of the loop variable, and the difference between
sequential loop variable values, often called the stepsize.

 The initial, terminal, and stepsize specifications of a loop are
called the loop parameters.



Iterative Statements:
The Ada for Statement

 The Ada for statement has the following form:

for variable in [reverse] discrete_range loop
. . .
end loop;

 A discrete range is a subrange of an integer or enumeration type,
such as 1..10 or Monday..Friday.

 The reverse reserved word, when present, indicates that the values
of the discrete range are assigned to the loop variable in reverse
order.



Iterative Statements:
The Ada for Statement

 Example:

for i in 1 .. 10 loop
i := i + 1;

end loop;



Iterative Statements:
The Ada for Statement

 The most interesting new feature of the Ada for statement is the
scope of the loop variable, which is the range of the loop.

 The variable is implicitly declared at the for statement and implicitly
undeclared after loop termination.

 For example, in
Count : Float := 1.35;
for Count in 1..10 loop

Sum := Sum + Count;
end loop;

 the Float variable Count is unaffected by the for loop.
 Upon loop termination, the variable Count is still Float type with the value

of 1.35.
 Also, the Float-type variable Count is hidden from the code in the body of

the loop, being masked by the loop counter Count, which is implicitly
declared to be the type of the discrete range, Integer.



Iterative Statements:
The for Statement of the C-Based 
Languages

 The general form of C’s for statement is

for (expression_1; expression_2; expression_3)
loop body



Iterative Statements:
The for Statement of the C-Based 
Languages

 Following is an example of a skeletal C for statement:

for (count = 1; count <= 10; count++)
. . .

}

 All of the expressions of C’s for are optional.
 An absent second expression is considered true, so a for without

one is potentially an infinite loop.
 If the first and/or third expressions are absent, no assumptions are

made.
 If the first expression is absent, it simply means that no initialization

takes place.



Iterative Statements:
The for Statement of the C-Based 
Languages

 C’s for is more flexible than the counting loop statement of Ada,
because each of the expressions can comprise multiple
expressions, which in turn allow multiple loop variables that can
be of any type.

 When multiple expressions are used in a single expression of a
for statement, they are separated by commas.

 All C statements have values, and this form of multiple
expression is no exception. The value of such a multiple
expression is the value of the last component.



Iterative Statements:
The for Statement of the C-Based 
Languages

 Consider the following for statement:

for (count1 = 0, count2 = 1.0;
count1 <= 10 && count2 <= 100.0;
sum = ++count1 + count2, count2 *= 2.5);



Iterative Statements:
The for Statement of Python

 The general form of Python’s for is

for loop_variable in object:
- loop body

[else:
- else clause]

 The loop variable is assigned the value in the object, which is often
a range, one for each execution of the loop body.

 The else clause, when present, is executed if the loop terminates
normally.



Iterative Statements:
The for Statement of Python

 Consider the following example:

for count in [2, 4, 6]:
print count

 For most simple counting loops in Python, the range function is
used. range takes one, two, or three parameters.

 The following examples demonstrate the actions of range:

range(5) returns [0, 1, 2, 3, 4]
range(2, 7) returns [2, 3, 4, 5, 6]
range(0, 8, 2) returns [0, 2, 4, 6]



Iterative Statements:
Logically Controlled Loops

 In many cases, collections of statements must be repeatedly
executed, but the repetition control is based on a Boolean
expression rather than a counter.

 For these situations, a logically controlled loop is convenient.
Actually, logically controlled loops are more general than
counter-controlled loops.

 Every counting loop can be built with a logical loop, but the
reverse is not true.



Iterative Statements:
Logically Controlled Loops

 The C-based programming languages include both pretest and
posttest logically controlled loops that are not special forms of
their counter-controlled iterative statements.

 The pretest and posttest logical loops have the following forms:

while (control_expression)
loop body

and

do
loop body

while (control_expression);



Iterative Statements:
Logically Controlled Loops

 These two statement forms are exemplified by the following C#
code segments:

sum = 0;
indat = Int32.Parse(Console.ReadLine());
while (indat >= 0) {

sum += indat;
indat = Int32.Parse(Console.ReadLine());

}

value = Int32.Parse(Console.ReadLine());
do {

value /= 10;
digits ++;

} while (value > 0);


	Statement-Level Control Structures
	Iterative Statements
	Iterative Statements:�Counter-Controlled Loops
	Iterative Statements:�The Ada for Statement
	Iterative Statements:�The Ada for Statement
	Iterative Statements:�The Ada for Statement
	Iterative Statements:�The for Statement of the C-Based Languages
	Iterative Statements:�The for Statement of the C-Based Languages
	Iterative Statements:�The for Statement of the C-Based Languages
	Iterative Statements:�The for Statement of the C-Based Languages
	Iterative Statements:�The for Statement of Python
	Iterative Statements:�The for Statement of Python
	Iterative Statements:�Logically Controlled Loops
	Iterative Statements:�Logically Controlled Loops
	Iterative Statements:�Logically Controlled Loops

