
Subprograms

Lecture 15

Instructor: C. Pu (Ph.D., Assistant Professor)

puc@marshall.edu 



Introduction

 Two fundamental abstraction facilities can be included in a
programming language:

 Process abstraction
 Data abstraction

 In the early history of high-level programming languages, only
process abstraction was included.

 Process abstraction, in the form of subprograms, has been a
central concept in all programming languages.



Fundamentals of Subprograms:
General Subprogram Characteristics

 All subprograms discussed have the following characteristics:
 Each subprogram has a single entry point.
 The calling program unit is suspended during the execution of the

called subprogram, which implies that there is only one subprogram
in execution at any given time.

 Control always returns to the caller when the subprogram
execution terminates.



Fundamentals of Subprograms:
Basic Definitions

 A subprogram definition describes the interface and the actions
of the subprogram abstraction.

 A subprogram call is the explicit request that a specific
subprogram be executed.

 A subprogram is said to be active if, after having been called, it
has begun execution but has not yet completed that execution.



Fundamentals of Subprograms:
Basic Definitions

 A subprogram header, which is the first part of the definition,
serves several purposes.

 First, it specifies that the following syntactic unit is a subprogram
definition of some particular kind.

 Second, the header provides a name for the subprogram.
 Third, it may optionally specify a list of parameters.



Fundamentals of Subprograms:
Basic Definitions

 Consider the following header examples:

def adder (parameters):

 This is the header of a Python subprogram named adder.
 Ruby subprogram headers also begin with def.

def calculate_value(x, y)
x + y

end



Fundamentals of Subprograms:
Basic Definitions

 Consider the following header examples:
def adder (parameters):

 This is the header of a Python subprogram named adder.
 Ruby subprogram headers also begin with def.
 The header of a JavaScript subprogram begins with function.

function name (argument1, argument2, ...)

function AbsoluteValue (x) {
if (x < 0) {

x = -x;
}
return x;

}



Fundamentals of Subprograms:
Basic Definitions

 In C, the header of a function named adder might be as follows:

void adder (parameters)

 The reserved word void in this header indicates that the
subprogram does not return a value.

int adder (int a, int b) {
return a + b;

}



Fundamentals of Subprograms:
Basic Definitions

 The body of subprograms defines its actions.

 In the C-based languages (and some others—for example,
JavaScript) the body of a subprogram is delimited by braces.

 In Ruby, an end statement terminates the body of a subprogram.

 As with compound statements, the statements in the body of a
Python function must be indented and the end of the body is
indicated by the first statement that is not indented.



Fundamentals of Subprograms:
Basic Definitions

 One characteristic of Python functions that sets them apart from
the functions of other common programming languages is that
function def statements are executable.

 When a def statement is executed, it assigns the given name to
the given function body.

 Until a function’s def has been executed, the function cannot be
called.



Fundamentals of Subprograms:
Basic Definitions

 Consider the following skeletal example:

if . . .
def fun1(. . .):

. . .
else

def fun2(. . .):
. . .

 A function definition is an executable statement. Its execution binds the
function name in the current local namespace to a function object (a
wrapper around the executable code for the function).

 The function definition does not execute the function body; this gets
executed only when the function is called.



Fundamentals of Subprograms:
Basic Definitions

 Subprograms can have declarations as well as definitions.

 This form parallels the variable declarations and definitions in C, in
which the declarations can be used to provide type information
but not to define variables.

 Subprogram declarations provide the subprogram’s protocol but
do not include their bodies.



Fundamentals of Subprograms:
Basic Definitions

 In both the cases of variables and subprograms, declarations are
needed for static type checking.

 In the case of subprograms, it is the type of the parameters that
must be checked.

 Function declarations are common in C and C++ programs,
where they are called prototypes.

 Such declarations are often placed in header files.



Fundamentals of Subprograms:
Basic Definitions

 Example of function declaration:

int max (int a, int b);

 Example of function definition:

int max(int a, int b) {
/* local variable declaration */
int result;
if (a > b)

result = a;
else

result = b;
return result;

}



Fundamentals of Subprograms:
Parameters

 Subprograms typically describe computations.

 There are two ways that a subprogram can gain access to the
data that it is to process:

 through direct access to nonlocal variables (declared elsewhere but
visible in the subprogram)

 through parameter passing



Fundamentals of Subprograms:
Parameters

 Subprograms typically describe computations.

 There are two ways that a subprogram can gain access to the
data that it is to process:

 through direct access to nonlocal variables (declared elsewhere but
visible in the subprogram)

x = "global"
def foo():

print("x inside:", x)

foo()
print("x outside:", x)



Fundamentals of Subprograms:
Parameters

 Subprograms typically describe computations.

 There are two ways that a subprogram can gain access to the
data that it is to process:

 through parameter passing

def func1(list):
print list
list = [47,11]
print list

fib = [0,1,1,2,3,5,8]
func1(fib)



Fundamentals of Subprograms:
Parameters

 Data passed through parameters are accessed through names
that are local to the subprogram.

 Parameter passing is more flexible than direct access to nonlocal
variables.

 In essence, a subprogram with parameter access to the data that
it is to process is a parameterized computation.

 It can perform its computation on whatever data it receives
through its parameters (presuming the types of the parameters
are as expected by the subprogram).



Fundamentals of Subprograms:
Parameters

 If data access is through nonlocal variables, the only way the
computation can proceed on different data is to assign new
values to those nonlocal variables between calls to the
subprogram.

 Extensive access to nonlocals can reduce reliability.

 Variables that are visible to the subprogram where access is
desired often end up also being visible where access to them is
not needed.



Fundamentals of Subprograms:
Parameters

 The parameters in the subprogram header are called formal
parameters.

int adder (int a, int b) {
return a + b;

}

 They are sometimes thought of as dummy variables because
they are not variables in the usual sense:

 In most cases, they are bound to storage only when the
subprogram is called, and that binding is often through some other
program variables.



Fundamentals of Subprograms:
Parameters

 Subprogram call statements must include the name of the
subprogram and a list of parameters to be bound to the formal
parameters of the subprogram.

 These parameters are called actual parameters.

sum = adder (x, y);

 They must be distinguished from formal parameters, because the
two usually have different restrictions on their forms, and of
course, their uses are quite different.



Fundamentals of Subprograms:
Parameters

 In nearly all programming languages, the correspondence
between actual and formal parameters—or the binding of
actual parameters to formal parameters—is done by position:

 The first actual parameter is bound to the first formal
parameter and so forth.

 Such parameters are called positional parameters.
 This is an effective and safe method of relating actual parameters to

their corresponding formal parameters, as long as the parameter
lists are relatively short.



Fundamentals of Subprograms:
Parameters

 When lists are long, however, it is easy for a programmer to
make mistakes in the order of actual parameters in the list.

def myFunction(alpha, beta, gamma, zeta, alphaList, betaList, gammaList, zetaList):
…

 One solution to this problem is to provide keyword
parameters

 The name of the formal parameter to which an actual parameter
is to be bound is specified with the actual parameter in a call.

 The advantage of keyword parameters is that they can appear
in any order in the actual parameter list.



Fundamentals of Subprograms:
Parameters

 Python functions can be called using this technique, as in

sumer (length = my_length, list = my_array, sum = my_sum)

 where the definition of sumer has the formal parameters length, list,
and sum.

 The disadvantage to keyword parameters is that the user of the
subprogram must know the names of formal parameters.



Fundamentals of Subprograms:
Parameters

 In addition to keyword parameters, Ada, Fortran 95+ and Python
allow positional parameters.

 Keyword and positional parameters can be mixed in a call, as in

sumer (my_length, sum = my_sum, list = my_array)

 The only restriction with this approach is that after a positional
parameter appears in the list, all remaining parameters must be
keyworded.

 This restriction is necessary because a position may no longer be
well defined after a keyword parameter has appeared.



Fundamentals of Subprograms:
Parameters

 In Python, Ruby, C++, Fortran 95+ Ada, and PHP, formal
parameters can have default values.

 A default value is used if no actual parameter is passed to the
formal parameter in the subprogram header.

 Consider the following Python function header:

def compute_pay (income, exemptions = 1, tax_rate)

pay = compute_pay (20000.0, tax_rate = 0.15)



Fundamentals of Subprograms:
Parameters

 In C++, which does not support keyword parameters, the rules
for default parameters are necessarily different.

 The default parameters must appear last, because parameters
are positionally associated.

 Once a default parameter is omitted in a call, all remaining
formal parameters must have default values.

float compute_pay (float income, float tax_rate, int exemptions = 1)

pay = compute_pay(20000.0, 0.15);


	Subprograms
	Introduction
	Fundamentals of Subprograms:�General Subprogram Characteristics
	Fundamentals of Subprograms:�Basic Definitions
	Fundamentals of Subprograms:�Basic Definitions
	Fundamentals of Subprograms:�Basic Definitions
	Fundamentals of Subprograms:�Basic Definitions
	Fundamentals of Subprograms:�Basic Definitions
	Fundamentals of Subprograms:�Basic Definitions
	Fundamentals of Subprograms:�Basic Definitions
	Fundamentals of Subprograms:�Basic Definitions
	Fundamentals of Subprograms:�Basic Definitions
	Fundamentals of Subprograms:�Basic Definitions
	Fundamentals of Subprograms:�Basic Definitions
	Fundamentals of Subprograms:�Parameters
	Fundamentals of Subprograms:�Parameters
	Fundamentals of Subprograms:�Parameters
	Fundamentals of Subprograms:�Parameters
	Fundamentals of Subprograms:�Parameters
	Fundamentals of Subprograms:�Parameters
	Fundamentals of Subprograms:�Parameters
	Fundamentals of Subprograms:�Parameters
	Fundamentals of Subprograms:�Parameters
	Fundamentals of Subprograms:�Parameters
	Fundamentals of Subprograms:�Parameters
	Fundamentals of Subprograms:�Parameters
	Fundamentals of Subprograms:�Parameters

