
Subprograms

Lecture 15

Instructor: C. Pu (Ph.D., Assistant Professor)

puc@marshall.edu 



Introduction

 Two fundamental abstraction facilities can be included in a
programming language:

 Process abstraction
 Data abstraction

 In the early history of high-level programming languages, only
process abstraction was included.

 Process abstraction, in the form of subprograms, has been a
central concept in all programming languages.



Fundamentals of Subprograms:
General Subprogram Characteristics

 All subprograms discussed have the following characteristics:
 Each subprogram has a single entry point.
 The calling program unit is suspended during the execution of the

called subprogram, which implies that there is only one subprogram
in execution at any given time.

 Control always returns to the caller when the subprogram
execution terminates.



Fundamentals of Subprograms:
Basic Definitions

 A subprogram definition describes the interface and the actions
of the subprogram abstraction.

 A subprogram call is the explicit request that a specific
subprogram be executed.

 A subprogram is said to be active if, after having been called, it
has begun execution but has not yet completed that execution.



Fundamentals of Subprograms:
Basic Definitions

 A subprogram header, which is the first part of the definition,
serves several purposes.

 First, it specifies that the following syntactic unit is a subprogram
definition of some particular kind.

 Second, the header provides a name for the subprogram.
 Third, it may optionally specify a list of parameters.



Fundamentals of Subprograms:
Basic Definitions

 Consider the following header examples:

def adder (parameters):

 This is the header of a Python subprogram named adder.
 Ruby subprogram headers also begin with def.

def calculate_value(x, y)
x + y

end



Fundamentals of Subprograms:
Basic Definitions

 Consider the following header examples:
def adder (parameters):

 This is the header of a Python subprogram named adder.
 Ruby subprogram headers also begin with def.
 The header of a JavaScript subprogram begins with function.

function name (argument1, argument2, ...)

function AbsoluteValue (x) {
if (x < 0) {

x = -x;
}
return x;

}



Fundamentals of Subprograms:
Basic Definitions

 In C, the header of a function named adder might be as follows:

void adder (parameters)

 The reserved word void in this header indicates that the
subprogram does not return a value.

int adder (int a, int b) {
return a + b;

}



Fundamentals of Subprograms:
Basic Definitions

 The body of subprograms defines its actions.

 In the C-based languages (and some others—for example,
JavaScript) the body of a subprogram is delimited by braces.

 In Ruby, an end statement terminates the body of a subprogram.

 As with compound statements, the statements in the body of a
Python function must be indented and the end of the body is
indicated by the first statement that is not indented.



Fundamentals of Subprograms:
Basic Definitions

 One characteristic of Python functions that sets them apart from
the functions of other common programming languages is that
function def statements are executable.

 When a def statement is executed, it assigns the given name to
the given function body.

 Until a function’s def has been executed, the function cannot be
called.



Fundamentals of Subprograms:
Basic Definitions

 Consider the following skeletal example:

if . . .
def fun1(. . .):

. . .
else

def fun2(. . .):
. . .

 A function definition is an executable statement. Its execution binds the
function name in the current local namespace to a function object (a
wrapper around the executable code for the function).

 The function definition does not execute the function body; this gets
executed only when the function is called.



Fundamentals of Subprograms:
Basic Definitions

 Subprograms can have declarations as well as definitions.

 This form parallels the variable declarations and definitions in C, in
which the declarations can be used to provide type information
but not to define variables.

 Subprogram declarations provide the subprogram’s protocol but
do not include their bodies.



Fundamentals of Subprograms:
Basic Definitions

 In both the cases of variables and subprograms, declarations are
needed for static type checking.

 In the case of subprograms, it is the type of the parameters that
must be checked.

 Function declarations are common in C and C++ programs,
where they are called prototypes.

 Such declarations are often placed in header files.



Fundamentals of Subprograms:
Basic Definitions

 Example of function declaration:

int max (int a, int b);

 Example of function definition:

int max(int a, int b) {
/* local variable declaration */
int result;
if (a > b)

result = a;
else

result = b;
return result;

}



Fundamentals of Subprograms:
Parameters

 Subprograms typically describe computations.

 There are two ways that a subprogram can gain access to the
data that it is to process:

 through direct access to nonlocal variables (declared elsewhere but
visible in the subprogram)

 through parameter passing



Fundamentals of Subprograms:
Parameters

 Subprograms typically describe computations.

 There are two ways that a subprogram can gain access to the
data that it is to process:

 through direct access to nonlocal variables (declared elsewhere but
visible in the subprogram)

x = "global"
def foo():

print("x inside:", x)

foo()
print("x outside:", x)



Fundamentals of Subprograms:
Parameters

 Subprograms typically describe computations.

 There are two ways that a subprogram can gain access to the
data that it is to process:

 through parameter passing

def func1(list):
print list
list = [47,11]
print list

fib = [0,1,1,2,3,5,8]
func1(fib)



Fundamentals of Subprograms:
Parameters

 Data passed through parameters are accessed through names
that are local to the subprogram.

 Parameter passing is more flexible than direct access to nonlocal
variables.

 In essence, a subprogram with parameter access to the data that
it is to process is a parameterized computation.

 It can perform its computation on whatever data it receives
through its parameters (presuming the types of the parameters
are as expected by the subprogram).



Fundamentals of Subprograms:
Parameters

 If data access is through nonlocal variables, the only way the
computation can proceed on different data is to assign new
values to those nonlocal variables between calls to the
subprogram.

 Extensive access to nonlocals can reduce reliability.

 Variables that are visible to the subprogram where access is
desired often end up also being visible where access to them is
not needed.



Fundamentals of Subprograms:
Parameters

 The parameters in the subprogram header are called formal
parameters.

int adder (int a, int b) {
return a + b;

}

 They are sometimes thought of as dummy variables because
they are not variables in the usual sense:

 In most cases, they are bound to storage only when the
subprogram is called, and that binding is often through some other
program variables.



Fundamentals of Subprograms:
Parameters

 Subprogram call statements must include the name of the
subprogram and a list of parameters to be bound to the formal
parameters of the subprogram.

 These parameters are called actual parameters.

sum = adder (x, y);

 They must be distinguished from formal parameters, because the
two usually have different restrictions on their forms, and of
course, their uses are quite different.



Fundamentals of Subprograms:
Parameters

 In nearly all programming languages, the correspondence
between actual and formal parameters—or the binding of
actual parameters to formal parameters—is done by position:

 The first actual parameter is bound to the first formal
parameter and so forth.

 Such parameters are called positional parameters.
 This is an effective and safe method of relating actual parameters to

their corresponding formal parameters, as long as the parameter
lists are relatively short.



Fundamentals of Subprograms:
Parameters

 When lists are long, however, it is easy for a programmer to
make mistakes in the order of actual parameters in the list.

def myFunction(alpha, beta, gamma, zeta, alphaList, betaList, gammaList, zetaList):
…

 One solution to this problem is to provide keyword
parameters

 The name of the formal parameter to which an actual parameter
is to be bound is specified with the actual parameter in a call.

 The advantage of keyword parameters is that they can appear
in any order in the actual parameter list.



Fundamentals of Subprograms:
Parameters

 Python functions can be called using this technique, as in

sumer (length = my_length, list = my_array, sum = my_sum)

 where the definition of sumer has the formal parameters length, list,
and sum.

 The disadvantage to keyword parameters is that the user of the
subprogram must know the names of formal parameters.



Fundamentals of Subprograms:
Parameters

 In addition to keyword parameters, Ada, Fortran 95+ and Python
allow positional parameters.

 Keyword and positional parameters can be mixed in a call, as in

sumer (my_length, sum = my_sum, list = my_array)

 The only restriction with this approach is that after a positional
parameter appears in the list, all remaining parameters must be
keyworded.

 This restriction is necessary because a position may no longer be
well defined after a keyword parameter has appeared.



Fundamentals of Subprograms:
Parameters

 In Python, Ruby, C++, Fortran 95+ Ada, and PHP, formal
parameters can have default values.

 A default value is used if no actual parameter is passed to the
formal parameter in the subprogram header.

 Consider the following Python function header:

def compute_pay (income, exemptions = 1, tax_rate)

pay = compute_pay (20000.0, tax_rate = 0.15)



Fundamentals of Subprograms:
Parameters

 In C++, which does not support keyword parameters, the rules
for default parameters are necessarily different.

 The default parameters must appear last, because parameters
are positionally associated.

 Once a default parameter is omitted in a call, all remaining
formal parameters must have default values.

float compute_pay (float income, float tax_rate, int exemptions = 1)

pay = compute_pay(20000.0, 0.15);


	Subprograms
	Introduction
	Fundamentals of Subprograms:�General Subprogram Characteristics
	Fundamentals of Subprograms:�Basic Definitions
	Fundamentals of Subprograms:�Basic Definitions
	Fundamentals of Subprograms:�Basic Definitions
	Fundamentals of Subprograms:�Basic Definitions
	Fundamentals of Subprograms:�Basic Definitions
	Fundamentals of Subprograms:�Basic Definitions
	Fundamentals of Subprograms:�Basic Definitions
	Fundamentals of Subprograms:�Basic Definitions
	Fundamentals of Subprograms:�Basic Definitions
	Fundamentals of Subprograms:�Basic Definitions
	Fundamentals of Subprograms:�Basic Definitions
	Fundamentals of Subprograms:�Parameters
	Fundamentals of Subprograms:�Parameters
	Fundamentals of Subprograms:�Parameters
	Fundamentals of Subprograms:�Parameters
	Fundamentals of Subprograms:�Parameters
	Fundamentals of Subprograms:�Parameters
	Fundamentals of Subprograms:�Parameters
	Fundamentals of Subprograms:�Parameters
	Fundamentals of Subprograms:�Parameters
	Fundamentals of Subprograms:�Parameters
	Fundamentals of Subprograms:�Parameters
	Fundamentals of Subprograms:�Parameters
	Fundamentals of Subprograms:�Parameters

