
Subprograms

Lecture 16

Instructor: C. Pu (Ph.D., Assistant Professor)

puc@marshall.edu 



Fundamentals of Subprograms:
Procedures and Functions

 There are two distinct categories of subprograms—procedures
and functions—both of which can be viewed as approaches to
extending the language.

 All subprograms are collections of statements that define
parameterized computations.

 Functions return values and procedures do not.

 In most languages that do not include procedures as a separate
form of subprogram, functions can be defined not to return
values and they can be used as procedures.



Fundamentals of Subprograms:
Procedures and Functions

 Procedures can produce results in the calling program unit by
two methods:

 (1) If there are variables that are not formal parameters but are still
visible in both the procedure and the calling program unit, the
procedure can change them;

 (2) If the procedure has formal parameters that allow the transfer
of data to the caller, those parameters can be changed.



Fundamentals of Subprograms:
Procedures and Functions

 Functions are called by appearances of their names in
expressions, along with the required actual parameters.

 The value produced by a function’s execution is returned to the
calling code, effectively replacing the call itself.

 For example, the value of the expression f(x) is whatever value f
produces when called with the parameter x.

 For a function that does not produce side effects, the returned
value is its only effect.



Fundamentals of Subprograms:
Procedures and Functions

 Functions define new user-defined “operators”.
 For example,

 if a language does not have an exponentiation operator, a function
can be written that returns the value of one of its parameters
raised to the power of another parameter.

 Its header in C++ could be

float power(float base, float exp)

which could be called with

result = 3.4 * power(10.0, x)



Local Referencing Environments:
Local Variables

 In most contemporary languages, local variables in a subprogram
are by default stack dynamic.

int adder(int list[], int listlen) {
int sum = 0;
int count;
for (count = 0; count < listlen; count++)

sum += list [count];
return sum;

}



Local Referencing Environments:
Local Variables

 In C and C++ functions, locals are stack dynamic unless
specifically declared to be static.

int adder(int list[], int listlen) {
static int sum = 0;
int count;
for (count = 0; count < listlen; count++)

sum += list [count];
return sum;

}



Local Referencing Environments:
Local Variables

 Subprograms can define their own variables, thereby defining
local referencing environments.

 Variables that are defined inside subprograms are called local
variables, because their scope is usually the body of the
subprogram in which they are defined.



Parameter-Passing Methods:
Semantics Models of Parameter Passing

 Parameter-passing methods are the ways in which parameters
are transmitted to and/or from called subprograms.

 Formal parameters are characterized by one of three distinct
semantics models:

 (1) They can receive data from the corresponding actual parameter;
(in mode)

 (2) They can transmit data to the actual parameter; (out mode)
 (3) They can do both. (inout mode)



Parameter-Passing Methods:
Semantics Models of Parameter Passing

 For example, consider a subprogram that takes two arrays of int
values as parameters—list1 and list2.

 The subprogram must add list1 to list2 and return the result as a
revised version of list2.

 Furthermore, the subprogram must create a new array from the
two given arrays and return it.

 For this subprogram, list1 should be in mode, because it is not
to be changed by the subprogram.

 list2 must be inout mode, because the subprogram needs the
given value of the array and must return its new value.

 The third array should be out mode, because there is no initial
value for this array and its computed value must be returned to
the caller.



Parameter-Passing Methods:
Implementation Models of Parameter 
Passing

 A variety of models have been developed by language designers to
guide the implementation of the three basic parameter transmission
modes.

 The three semantics models of parameter passing when physical moves
are used



Parameter-Passing Methods:
Semantics Models of Parameter Passing

 There are two conceptual models of how data transfers take
place in parameter transmission:

 An actual value is copied (to the caller, to the called, or both
ways),

 An access path is transmitted.

 Most commonly, the access path is a simple pointer or
reference.



Parameter-Passing Methods:
Pass-by-Value

 When a parameter is passed-by-value, the value of the actual
parameter is used to initialize the corresponding formal
parameter, which then acts as a local variable in the subprogram,
thus implementing in-mode semantics.

 Pass-by-value is normally implemented by copy, because
accesses often are more efficient with this approach.



Parameter-Passing Methods:
Pass-by-Value

 Example:
void swap(int a, int b) {

int temp;
temp = a;
a = b;
b = temp;

}

int main() {
int num1 = 10, num2 = 20;
printf("Before swapping num1 = %d num2 = %d\n”, num1, num2);
swap(num1, num2);
printf("After swapping num1 = %d num2 = %d\n”, num1, num2);
return 0;

}



Parameter-Passing Methods:
Pass-by-Reference

 Pass-by-reference is a second implementation model for inout-
mode parameters.

 Pass-by-reference method transmits an access path, usually
just an address, to the called subprogram.

 This provides the access path to the cell storing the actual
parameter.

 Thus, the called subprogram is allowed to access the actual
parameter in the calling program unit.

 In effect, the actual parameter is shared with the called
subprogram.



Parameter-Passing Methods:
Pass-by-Reference

 Example:
void swap(int *a, int *b) {

int temp;
temp = *a;
*a = *b;
*b = temp;

}

int main() {
int num1 = 10, num2 = 20;
printf("Before swapping num1 = %d num2 = %d\n”, num1, num2);
swap(&num1, &num2);
printf("After swapping num1 = %d num2 = %d\n”, num1, num2);
return 0;

}


	Subprograms
	Fundamentals of Subprograms:�Procedures and Functions
	Fundamentals of Subprograms:�Procedures and Functions
	Fundamentals of Subprograms:�Procedures and Functions
	Fundamentals of Subprograms:�Procedures and Functions
	Local Referencing Environments:�Local Variables
	Local Referencing Environments:�Local Variables
	Local Referencing Environments:�Local Variables
	Parameter-Passing Methods:�Semantics Models of Parameter Passing
	Parameter-Passing Methods:�Semantics Models of Parameter Passing
	Parameter-Passing Methods:�Implementation Models of Parameter Passing
	Parameter-Passing Methods:�Semantics Models of Parameter Passing
	Parameter-Passing Methods:�Pass-by-Value
	Parameter-Passing Methods:�Pass-by-Value
	Parameter-Passing Methods:�Pass-by-Reference
	Parameter-Passing Methods:�Pass-by-Reference

