
Subprograms

Lecture 16

Instructor: C. Pu (Ph.D., Assistant Professor)

puc@marshall.edu 



Fundamentals of Subprograms:
Procedures and Functions

 There are two distinct categories of subprograms—procedures
and functions—both of which can be viewed as approaches to
extending the language.

 All subprograms are collections of statements that define
parameterized computations.

 Functions return values and procedures do not.

 In most languages that do not include procedures as a separate
form of subprogram, functions can be defined not to return
values and they can be used as procedures.



Fundamentals of Subprograms:
Procedures and Functions

 Procedures can produce results in the calling program unit by
two methods:

 (1) If there are variables that are not formal parameters but are still
visible in both the procedure and the calling program unit, the
procedure can change them;

 (2) If the procedure has formal parameters that allow the transfer
of data to the caller, those parameters can be changed.



Fundamentals of Subprograms:
Procedures and Functions

 Functions are called by appearances of their names in
expressions, along with the required actual parameters.

 The value produced by a function’s execution is returned to the
calling code, effectively replacing the call itself.

 For example, the value of the expression f(x) is whatever value f
produces when called with the parameter x.

 For a function that does not produce side effects, the returned
value is its only effect.



Fundamentals of Subprograms:
Procedures and Functions

 Functions define new user-defined “operators”.
 For example,

 if a language does not have an exponentiation operator, a function
can be written that returns the value of one of its parameters
raised to the power of another parameter.

 Its header in C++ could be

float power(float base, float exp)

which could be called with

result = 3.4 * power(10.0, x)



Local Referencing Environments:
Local Variables

 In most contemporary languages, local variables in a subprogram
are by default stack dynamic.

int adder(int list[], int listlen) {
int sum = 0;
int count;
for (count = 0; count < listlen; count++)

sum += list [count];
return sum;

}



Local Referencing Environments:
Local Variables

 In C and C++ functions, locals are stack dynamic unless
specifically declared to be static.

int adder(int list[], int listlen) {
static int sum = 0;
int count;
for (count = 0; count < listlen; count++)

sum += list [count];
return sum;

}



Local Referencing Environments:
Local Variables

 Subprograms can define their own variables, thereby defining
local referencing environments.

 Variables that are defined inside subprograms are called local
variables, because their scope is usually the body of the
subprogram in which they are defined.



Parameter-Passing Methods:
Semantics Models of Parameter Passing

 Parameter-passing methods are the ways in which parameters
are transmitted to and/or from called subprograms.

 Formal parameters are characterized by one of three distinct
semantics models:

 (1) They can receive data from the corresponding actual parameter;
(in mode)

 (2) They can transmit data to the actual parameter; (out mode)
 (3) They can do both. (inout mode)



Parameter-Passing Methods:
Semantics Models of Parameter Passing

 For example, consider a subprogram that takes two arrays of int
values as parameters—list1 and list2.

 The subprogram must add list1 to list2 and return the result as a
revised version of list2.

 Furthermore, the subprogram must create a new array from the
two given arrays and return it.

 For this subprogram, list1 should be in mode, because it is not
to be changed by the subprogram.

 list2 must be inout mode, because the subprogram needs the
given value of the array and must return its new value.

 The third array should be out mode, because there is no initial
value for this array and its computed value must be returned to
the caller.



Parameter-Passing Methods:
Implementation Models of Parameter 
Passing

 A variety of models have been developed by language designers to
guide the implementation of the three basic parameter transmission
modes.

 The three semantics models of parameter passing when physical moves
are used



Parameter-Passing Methods:
Semantics Models of Parameter Passing

 There are two conceptual models of how data transfers take
place in parameter transmission:

 An actual value is copied (to the caller, to the called, or both
ways),

 An access path is transmitted.

 Most commonly, the access path is a simple pointer or
reference.



Parameter-Passing Methods:
Pass-by-Value

 When a parameter is passed-by-value, the value of the actual
parameter is used to initialize the corresponding formal
parameter, which then acts as a local variable in the subprogram,
thus implementing in-mode semantics.

 Pass-by-value is normally implemented by copy, because
accesses often are more efficient with this approach.



Parameter-Passing Methods:
Pass-by-Value

 Example:
void swap(int a, int b) {

int temp;
temp = a;
a = b;
b = temp;

}

int main() {
int num1 = 10, num2 = 20;
printf("Before swapping num1 = %d num2 = %d\n”, num1, num2);
swap(num1, num2);
printf("After swapping num1 = %d num2 = %d\n”, num1, num2);
return 0;

}



Parameter-Passing Methods:
Pass-by-Reference

 Pass-by-reference is a second implementation model for inout-
mode parameters.

 Pass-by-reference method transmits an access path, usually
just an address, to the called subprogram.

 This provides the access path to the cell storing the actual
parameter.

 Thus, the called subprogram is allowed to access the actual
parameter in the calling program unit.

 In effect, the actual parameter is shared with the called
subprogram.



Parameter-Passing Methods:
Pass-by-Reference

 Example:
void swap(int *a, int *b) {

int temp;
temp = *a;
*a = *b;
*b = temp;

}

int main() {
int num1 = 10, num2 = 20;
printf("Before swapping num1 = %d num2 = %d\n”, num1, num2);
swap(&num1, &num2);
printf("After swapping num1 = %d num2 = %d\n”, num1, num2);
return 0;

}


	Subprograms
	Fundamentals of Subprograms:�Procedures and Functions
	Fundamentals of Subprograms:�Procedures and Functions
	Fundamentals of Subprograms:�Procedures and Functions
	Fundamentals of Subprograms:�Procedures and Functions
	Local Referencing Environments:�Local Variables
	Local Referencing Environments:�Local Variables
	Local Referencing Environments:�Local Variables
	Parameter-Passing Methods:�Semantics Models of Parameter Passing
	Parameter-Passing Methods:�Semantics Models of Parameter Passing
	Parameter-Passing Methods:�Implementation Models of Parameter Passing
	Parameter-Passing Methods:�Semantics Models of Parameter Passing
	Parameter-Passing Methods:�Pass-by-Value
	Parameter-Passing Methods:�Pass-by-Value
	Parameter-Passing Methods:�Pass-by-Reference
	Parameter-Passing Methods:�Pass-by-Reference

