
1

Introducing C

Lecture 17

Instructor: C. Pu (Ph.D., Assistant Professor)

puc@marshall.edu

Origins of C
• C is a by-product of UNIX, developed at Bell

Laboratories by Ken Thompson, Dennis Ritchie,
and others.

• Thompson designed a small language named B.
• B was based on BCPL, a systems programming

language developed in the mid-1960s.

2

Origins of C
• By 1971, Ritchie began to develop an extended

version of B.
• He called his language NB (“New B”) at first.
• As the language began to diverge more from B, he

changed its name to C.
• The language was stable enough by 1973 that

UNIX could be rewritten in C.

3

Standardization of C
• K&R C

– Described in Kernighan and Ritchie, The C Programming
Language (1978)

– De facto standard

• C89/C90
– ANSI standard X3.159-1989 (completed in 1988; formally

approved in December 1989)
– International standard ISO/IEC 9899:1990

• C99
– International standard ISO/IEC 9899:1999
– Incorporates changes from Amendment 1 (1995)

4

C-Based Languages
• C++ includes all the features of C, but adds

classes and other features to support object-
oriented programming.

• Java is based on C++ and therefore inherits many
C features.

• C# is a more recent language derived from C++
and Java.

• Perl has adopted many of the features of C.
• Why C???

5

Properties of C
• Low-level

– Access to machine-level concepts (bytes and address)
– Operations that correspond closely to a computer’s

built-in instructions.
• Small

– Limited set of features
– Relies heavily on a “library” of standard functions

• Permissive
– A wide degree of programming
– Doesn’t mandate the detailed error-checking

6

Strengths of C
• Efficiency
• Portability
• Power
• Flexibility
• Standard library
• Integration with UNIX

7

Weaknesses of C
• Programs can be error-prone.
• Programs can be difficult to understand.
• Programs can be difficult to modify.

8

Effective Use of C
• Learn how to avoid pitfalls.
• Use software tools (debuggers) to make programs

more reliable.
• Take advantage of existing code libraries.
• Adopt a sensible set of coding conventions.
• Avoid “tricks” and overly complex code.
• Stick to the standard.

9

Program: Printing Hello World
#include <stdio.h>

int main(void)
{

printf(“Hello World!\n");

return 0;
}

• This program might be stored in a file named
ch02_01.c.

• The file name doesn’t matter, but the .c extension is
often required.

10

Compiling and Linking
• Before a program can be executed, three steps are

usually necessary:
– Preprocessing. The preprocessor obeys commands that

begin with # (known as directives)
– Compiling. A compiler translates then translates the

program into machine instructions (object code).
– Linking. A linker combines the object code produced

by the compiler with any additional code needed to
yield a complete executable program.

• The preprocessor is usually integrated with the
compiler.

11

The GCC Compiler
• GCC is one of the most popular C compilers.
• GCC is supplied with Linux but is available for

many other platforms as well.
• Using GCC compiler:
$ gcc –o ch02_01 ch02_01.c

12

The GCC Compiler
• GCC is one of the most popular C compilers.
• GCC is supplied with Linux but is available for

many other platforms as well.
• Using GCC compiler:
$ gcc -o ch02_01 ch02_01.c

13

Command to compile and link

The GCC Compiler
• GCC is one of the most popular C compilers.
• GCC is supplied with Linux but is available for

many other platforms as well.
• Using GCC compiler:
$ gcc -o ch02_01 ch02_01.c

14

Command option: specify the name of the executable program

The GCC Compiler
• GCC is one of the most popular C compilers.
• GCC is supplied with Linux but is available for

many other platforms as well.
• Using GCC compiler:
$ gcc -o ch02_01 ch02_01.c

15

the name of the executable program

The GCC Compiler
• GCC is one of the most popular C compilers.
• GCC is supplied with Linux but is available for

many other platforms as well.
• Using GCC compiler:
$ gcc -o ch02_01 ch02_01.c

16

Source file

The GCC Compiler
• GCC is one of the most popular C compilers.
• GCC is supplied with Linux but is available for

many other platforms as well.
• Using GCC compiler:
$ gcc -o ch02_01 ch02_01.c

• http://www.tutorialspoint.com/compile_c
_online.php

17

http://www.tutorialspoint.com/compile_c_online.php

Integrated Development Environments
• An integrated development environment (IDE) is

a software package that makes it possible to edit,
compile, link, execute, and debug a program
without leaving the environment.

• Visual Studio 2015

18

The General Form of a Simple Program
• Simple C programs have the form

directives

int main(void)
{

statements
}

19

The General Form of a Simple Program
• Even the simplest C programs rely on three key

language features:
– Directives
– Functions
– Statements

20

Directives
• Before a C program is compiled, it is first edited

by a preprocessor.
• Commands intended for the preprocessor are

called directives.
• Example:
#include <stdio.h>
Standard Input and Output Library

• <stdio.h> is a header containing information
about C’s standard I/O library, included in our
program.
– printf

21

Directives
• Directives always begin with a # character.
• By default, directives are one line long; there’s no

semicolon or other special marker at the end.
• Format:

#include <filename>
• Example:

#include <math.h>
http://www.tutorialspoint.com/c_standard_library/math_h.
htm

22

http://www.tutorialspoint.com/c_standard_library/math_h.htm

Functions
• A function is a series of statements that have been

grouped together and given a name.
• Library functions are provided as part of the C

implementation.
• A function that computes a value uses a return

statement to specify what value it “returns”:
return x + 1;

23

The main Function
• The main function is mandatory.
• main is special: it gets called automatically when

the program is executed.
• main returns a status code; the value 0 indicates

normal program termination.
• If there’s no return statement at the end of the
main function, many compilers will produce a
warning message.

24

Statements
• A statement is a command to be executed when

the program runs.
• ch02_01.c uses only two kinds of statements.

One is the return statement; the other is the
function call.

• Asking a function to perform its assigned task is
known as calling the function.

• Ch02_01.c calls printf to display a string:
printf(“Hello World.\n");

25

Statements
• C requires that each statement end with a

semicolon.

– There’s one exception: the compound statement.
26

Printing Strings
• When the printf function displays a string

literal—characters enclosed in double quotation
marks—it doesn’t show the quotation marks.

• printf doesn’t automatically advance to the
next output line when it finishes printing.

• To make printf advance one line, include \n
(the new-line character) in the string to be
printed.

27

Comments
• A comment begins with /* and end with */.
/* This is a comment */

• Comments may appear almost anywhere in a
program, either on separate lines or on the same
lines as other program text.

• Comments may extend over more than one line.
/* Name: ch2_04.c

Purpose: Prints Hello World
Date:07-12-2017
Author: Cong Pu */

28

Comments
printf(“My ");
printf(“name is ");
printf(“James ");
printf(“Bond.\n");

29

Comments
printf("My "); /* forgot to close this comment
printf(“name is ");
printf(“James "); /* so it ends here */
printf(“Bond");

• Warning: Forgetting to terminate a comment may cause
the compiler to ignore part of your program:

30

Comments
• Warning: Forgetting to terminate a comment may cause

the compiler to ignore part of your program:
printf("My "); /* forgot to close this comment
printf(“name is ");
printf(“James "); /* so it ends here */
printf(“Bond");

31

Comments
• Warning: Forgetting to terminate a comment may cause

the compiler to ignore part of your program:
printf("My "); /* forgot to close this comment
printf(“name is ");
printf(“James "); /* so it ends here */
printf(“Bond");

32

Comments
• Comments can also be written in the following

way:
// This is a comment

• This style of comment ends automatically at the
end of a line.

33

Variables and Assignment
• Most programs need to a way to store data

temporarily during program execution.
• These storage locations are called variables.

34

Types
• Every variable must have a type.
• https://www.geeksforgeeks.org/data-types-in-c/
• C has a wide variety of types, including int and
float.

• A variable of type int (short for integer) can
store a whole number such as 0, 1, 392, or –2553.
– 2 Bytes, -32,768 to 32,767
OR
– 4 Bytes, -2,147,483,648 to 2,147,483,647

35

https://www.geeksforgeeks.org/data-types-in-c/

Declarations
• Variables must be declared before they are used.
• Variables can be declared one at a time:
int height;
float profit;

• Alternatively, several can be declared at the same
time:
int height, length, width, volume;
float profit, loss;

36

Declarations
• In C89, when main contains declarations, these

must precede statements:
int main(void)
{

declarations
statements

}

• In C99, declarations don’t have to come before
statements.

37

Assignment
• A variable can be given a value by means of

assignment:
height = 8;

The number 8 is said to be a constant.
• Before a variable can be assigned a value—or

used in any other way—it must first be declared.

38

Assignment
• A constant assigned to a float variable usually

contains a decimal point:
profit = 2150.48;

• It’s best to append the letter f to a floating-point
constant if it is assigned to a float variable:
profit = 2150.48f;

Failing to include the f may cause a warning from
the compiler.

39

Assignment
• An int variable is normally assigned a value of

type int, and a float variable is normally
assigned a value of type float.

• Mixing types (such as assigning an int value to a
float variable or assigning a float value to an
int variable) is possible but not always safe.

40

Assignment
• Once a variable has been assigned a value, it can

be used to help compute the value of another
variable:

height = 8;
length = 12;
width = 10;

volume = height * length * width;
/* volume is now 960 */

41

	Slide Number 1
	Origins of C
	Origins of C
	Standardization of C
	C-Based Languages
	Properties of C
	Strengths of C
	Weaknesses of C
	Effective Use of C
	Program: Printing Hello World
	Compiling and Linking
	The GCC Compiler
	The GCC Compiler
	The GCC Compiler
	The GCC Compiler
	The GCC Compiler
	The GCC Compiler
	Integrated Development Environments
	The General Form of a Simple Program
	The General Form of a Simple Program
	Directives
	Directives
	Functions
	The main Function
	Statements
	Statements
	Printing Strings
	Comments
	Comments
	Comments
	Comments
	Comments
	Comments
	Variables and Assignment
	Types
	Declarations
	Declarations
	Assignment
	Assignment
	Assignment
	Assignment

