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Introducing C

Lecture 17

Instructor: C. Pu (Ph.D., Assistant Professor)

puc@marshall.edu 



Origins of C
• C is a by-product of UNIX, developed at Bell 

Laboratories by Ken Thompson, Dennis Ritchie, 
and others. 

• Thompson designed a small language named B.
• B was based on BCPL, a systems programming 

language developed in the mid-1960s.
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Origins of C
• By 1971, Ritchie began to develop an extended 

version of B.
• He called his language NB (“New B”) at first.
• As the language began to diverge more from B, he 

changed its name to C.
• The language was stable enough by 1973 that 

UNIX could be rewritten in C.
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Standardization of C
• K&R C

– Described in Kernighan and Ritchie, The C Programming 
Language (1978)

– De facto standard

• C89/C90
– ANSI standard X3.159-1989 (completed in 1988; formally 

approved in December 1989)
– International standard ISO/IEC 9899:1990

• C99
– International standard ISO/IEC 9899:1999
– Incorporates changes from Amendment 1 (1995)
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C-Based Languages
• C++ includes all the features of C, but adds 

classes and other features to support object-
oriented programming.

• Java is based on C++ and therefore inherits many 
C features.

• C# is a more recent language derived from C++ 
and Java.

• Perl has adopted many of the features of C.
• Why C???
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Properties of C
• Low-level

– Access to machine-level concepts (bytes and address)
– Operations that correspond closely to a computer’s 

built-in instructions.
• Small

– Limited set of features
– Relies heavily on a “library” of standard functions 

• Permissive
– A wide degree of programming
– Doesn’t mandate the detailed error-checking
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Strengths of C
• Efficiency
• Portability
• Power
• Flexibility
• Standard library
• Integration with UNIX
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Weaknesses of C
• Programs can be error-prone. 
• Programs can be difficult to understand. 
• Programs can be difficult to modify.
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Effective Use of C
• Learn how to avoid pitfalls.
• Use software tools (debuggers) to make programs 

more reliable. 
• Take advantage of existing code libraries.
• Adopt a sensible set of coding conventions.
• Avoid “tricks” and overly complex code.
• Stick to the standard.
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Program: Printing Hello World
#include <stdio.h>

int main(void)
{

printf(“Hello World!\n");

return 0;
}

• This program might be stored in a file named 
ch02_01.c.

• The file name doesn’t matter, but the .c extension is 
often required.
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Compiling and Linking
• Before a program can be executed, three steps are 

usually necessary:
– Preprocessing. The preprocessor obeys commands that 

begin with # (known as directives)
– Compiling. A compiler translates then translates the 

program into machine instructions (object code).
– Linking. A linker combines the object code produced 

by the compiler with any additional code needed to 
yield a complete executable program.

• The preprocessor is usually integrated with the 
compiler.
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The GCC Compiler
• GCC is one of the most popular C compilers.
• GCC is supplied with Linux but is available for 

many other platforms as well.
• Using GCC compiler:
$ gcc –o ch02_01 ch02_01.c
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The GCC Compiler
• GCC is one of the most popular C compilers.
• GCC is supplied with Linux but is available for 

many other platforms as well.
• Using GCC compiler:
$ gcc -o ch02_01 ch02_01.c
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The GCC Compiler
• GCC is one of the most popular C compilers.
• GCC is supplied with Linux but is available for 

many other platforms as well.
• Using GCC compiler:
$ gcc -o ch02_01 ch02_01.c
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The GCC Compiler
• GCC is one of the most popular C compilers.
• GCC is supplied with Linux but is available for 

many other platforms as well.
• Using GCC compiler:
$ gcc -o ch02_01 ch02_01.c
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The GCC Compiler
• GCC is one of the most popular C compilers.
• GCC is supplied with Linux but is available for 

many other platforms as well.
• Using GCC compiler:
$ gcc -o ch02_01 ch02_01.c
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The GCC Compiler
• GCC is one of the most popular C compilers.
• GCC is supplied with Linux but is available for 

many other platforms as well.
• Using GCC compiler:
$ gcc -o ch02_01 ch02_01.c

• http://www.tutorialspoint.com/compile_c
_online.php
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Integrated Development Environments
• An integrated development environment (IDE) is 

a software package that makes it possible to edit, 
compile, link, execute, and debug a program 
without leaving the environment.

• Visual Studio 2015
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The General Form of a Simple Program
• Simple C programs have the form

directives

int main(void)
{

statements
}

19



The General Form of a Simple Program
• Even the simplest C programs rely on three key 

language features:
– Directives
– Functions
– Statements
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Directives
• Before a C program is compiled, it is first edited 

by a preprocessor.
• Commands intended for the preprocessor are 

called directives.
• Example:
#include <stdio.h>
Standard Input and Output Library

• <stdio.h> is a header containing information 
about C’s standard I/O library, included in our 
program.
– printf
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Directives
• Directives always begin with a # character.
• By default, directives are one line long; there’s no

semicolon or other special marker at the end.
• Format:

#include <filename>
• Example:

#include <math.h>
http://www.tutorialspoint.com/c_standard_library/math_h.
htm
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Functions
• A function is a series of statements that have been 

grouped together and given a name.
• Library functions are provided as part of the C 

implementation.
• A function that computes a value uses a return

statement to specify what value it “returns”:
return x + 1;
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The main Function
• The main function is mandatory.
• main is special: it gets called automatically when 

the program is executed.
• main returns a status code; the value 0 indicates 

normal program termination.
• If there’s no return statement at the end of the 
main function, many compilers will produce a 
warning message.
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Statements
• A statement is a command to be executed when 

the program runs.
• ch02_01.c uses only two kinds of statements. 

One is the return statement; the other is the 
function call.

• Asking a function to perform its assigned task is 
known as calling the function.

• Ch02_01.c calls printf to display a string:
printf(“Hello World.\n");
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Statements
• C requires that each statement end with a 

semicolon.

– There’s one exception: the compound statement.
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Printing Strings
• When the printf function displays a string 

literal—characters enclosed in double quotation 
marks—it doesn’t show the quotation marks.

• printf doesn’t automatically advance to the 
next output line when it finishes printing.

• To make printf advance one line, include \n
(the new-line character) in the string to be 
printed.

27



Comments
• A comment begins with /* and end with */.
/* This is a comment */

• Comments may appear almost anywhere in a 
program, either on separate lines or on the same 
lines as other program text. 

• Comments may extend over more than one line.
/* Name: ch2_04.c

Purpose: Prints Hello World
Date:07-12-2017
Author: Cong Pu */
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Comments
printf(“My ");     
printf(“name is ");
printf(“James ");   
printf(“Bond.\n");
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Comments
printf("My ");      /* forgot to close this comment
printf(“name is ");
printf(“James ");   /* so it ends here */
printf(“Bond");

• Warning: Forgetting to terminate a comment may cause 
the compiler to ignore part of your program:
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Comments
• Warning: Forgetting to terminate a comment may cause 

the compiler to ignore part of your program:
printf("My ");  /* forgot to close this comment
printf(“name is ");
printf(“James "); /* so it ends here */
printf(“Bond");
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Comments
• Warning: Forgetting to terminate a comment may cause 

the compiler to ignore part of your program:
printf("My ");  /* forgot to close this comment
printf(“name is ");
printf(“James "); /* so it ends here */
printf(“Bond");
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Comments
• Comments can also be written in the following 

way:
// This is a comment

• This style of comment ends automatically at the 
end of a line.
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Variables and Assignment
• Most programs need to a way to store data 

temporarily during program execution.
• These storage locations are called variables.
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Types
• Every variable must have a type.
• https://www.geeksforgeeks.org/data-types-in-c/
• C has a wide variety of types, including int and 
float.

• A variable of type int (short for integer) can 
store a whole number such as 0, 1, 392, or –2553.
– 2 Bytes, -32,768 to 32,767
OR
– 4 Bytes, -2,147,483,648 to 2,147,483,647
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Declarations
• Variables must be declared before they are used.
• Variables can be declared one at a time:
int height;
float profit;

• Alternatively, several can be declared at the same 
time:
int height, length, width, volume;
float profit, loss;
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Declarations
• In C89, when main contains declarations, these 

must precede statements:
int main(void)
{

declarations
statements

}

• In C99, declarations don’t have to come before 
statements.
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Assignment
• A variable can be given a value by means of 

assignment:
height = 8;

The number 8 is said to be a constant.
• Before a variable can be assigned a value—or 

used in any other way—it must first be declared.
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Assignment
• A constant assigned to a float variable usually 

contains a decimal point:
profit = 2150.48;

• It’s best to append the letter f to a floating-point 
constant if it is assigned to a float variable:
profit = 2150.48f;

Failing to include the f may cause a warning from 
the compiler.

39



Assignment
• An int variable is normally assigned a value of 

type int, and a float variable is normally 
assigned a value of type float.

• Mixing types (such as assigning an int value to a 
float variable or assigning a float value to an 
int variable) is possible but not always safe.
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Assignment
• Once a variable has been assigned a value, it can 

be used to help compute the value of another 
variable:

height = 8;
length = 12;
width = 10;

volume = height * length * width;
/* volume is now 960 */
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