
1

Introducing C

Lecture 18

Instructor: C. Pu (Ph.D., Assistant Professor)

puc@marshall.edu

Printing the Value of a Variable

• printf can be used to display the current value

of a variable.

• To write the message

int height = 10;

printf("Height: %d\n", height);

• %d is a placeholder indicating where the value of

height is to be filled in.

2

Printing the Value of a Variable

• %d works only for int variables; to print a

float variable, use %f instead.

• By default, %f displays a number with six digits

after the decimal point.

• To force %f to display p digits after the decimal

point, put .p between % and f.

• To print the line

Profit: $2150.48

use the following call of printf:

printf("Profit: $%.2f\n", profit);

3

Printing the Value of a Variable

• There’s no limit to the number of variables that can

be printed by a single call of printf:

printf("Height: %d Length: %d\n", height, length);

4

Initialization

• Some variables are automatically set to zero when

a program begins to execute, but most are not.

• A variable that doesn’t have a default value and

hasn’t yet been assigned a value by the program is

said to be uninitialized.

• Attempting to access the value of an uninitialized

variable may yield an unpredictable result.

• With some compilers, worse behavior—even a

program crash—may occur.

5

Initialization

• The initial value of a variable may be included in

its declaration:

int height = 8;

The value 8 is said to be an initializer.

• Any number of variables can be initialized in the

same declaration:

int height = 8, length = 12, width = 10;

• Each variable requires its own initializer.

int height, length, width = 10;

/* initializes only width */

6

Printing Expressions

• printf can display the value of any numeric

expression.

• The statements

volume = height * length * width;

printf("%d\n", volume);

could be replaced by

printf("%d\n", height * length * width);

7

Reading Input

• scanf is the C library’s counterpart to printf.

• scanf requires a format string to specify the

appearance of the input data.

• Example of using scanf to read an int value:

int i;

scanf("%d", &i);

/* reads an integer; stores into i */

• The & symbol is usually (but not always) required

when using scanf.

8

Reading Input

• Reading a float value requires a slightly

different call of scanf:

scanf("%f", &x);

• "%f" tells scanf to look for an input value in

float format (the number may contain a decimal

point, but doesn’t have to).

9

Defining Names for Constants

• Using a feature known as macro definition, we

can name this constant:

#define INCHES_PER_POUND 166

10

Defining Names for Constants

• When a program is compiled, the preprocessor replaces

each macro by the value that it represents.

• During preprocessing, the statement
weight = (volume + INCHES_PER_POUND - 1) / INCHES_PER_POUND;

will become
weight = (volume + 166 - 1) / 166;

11

Identifiers

• Names for variables, functions, macros, and other

entities are called identifiers.

• An identifier may contain letters, digits, and

underscores, but must begin with a letter or

underscore:

times10 get_next_char _done

It’s usually best to avoid identifiers that begin with

an underscore.

• Examples of illegal identifiers:

10times get-next-char

12

Identifiers

• C is case-sensitive: it distinguishes between

upper-case and lower-case letters in identifiers.

• For example, the following identifiers are all

different:

job joB jOb jOB Job JoB JOb JOB

13

Keywords

• The following keywords can’t be used as

identifiers:

auto enum restrict* unsigned

break extern return void

case float short volatile

char for signed while

const goto sizeof _Bool*

continue if static _Complex*

default inline* struct _Imaginary*

do int switch

double long typedef

else register union

*C99 only

14

Layout of a C Program

• The whole program can’t be put on one line,

because each preprocessing directive requires a

separate line.

• Compressing programs in this fashion isn’t a good

idea.

• In fact, adding spaces and blank lines to a program

can make it easier to read and understand.

15

Layout of a C Program

• C allows any amount of space—blanks, tabs, and

new-line characters—between tokens.

• Consequences for program layout:

– Statements can be divided over any number of lines.

– Space between tokens (such as before and after each

operator, and after each comma) makes it easier for the

eye to separate them.

– Indentation can make nesting easier to spot.

– Blank lines can divide a program into logical units.

16

The printf Function

• The printf function must be supplied with a format

string, followed by any values that are to be inserted

into the string during printing:

printf(string, expr1, expr2, …);

• The format string may contain both ordinary

characters and conversion specifications, which

begin with the % character.

• A conversion specification is a placeholder

representing a value to be filled in during printing.

– %d is used for int values

– %f is used for float values
17

The printf Function

• Ordinary characters in a format string are printed as they

appear in the string; conversion specifications are

replaced.

• Example (01.c):

int i, j;

float x, y;

i = 10;

j = 20;

x = 43.2892f;

y = 5527.0f;

printf("i = %d, j = %d, x = %f, y = %f\n", i, j, x, y);

• Output:

i = 10, j = 20, x = 43.289200, y = 5527.000000

18

The printf Function

• Compilers aren’t required to check that the

number of conversion specifications in a format

string matches the number of output items.

• Too many conversion specifications: (02.c)

printf("%d %d\n", i); /*** “WRONG” ***/

• Too few conversion specifications: (03.c)

printf("%d\n", i, j); /*** “WRONG” ***/

19

The printf Function

• Compilers aren’t required to check that a conversion

specification is appropriate.

• If the programmer uses an incorrect specification,

the program will produce meaningless output: (04.c)

int y = 10;

float x = 3.14f;

…

printf("%d %f\n", x, y); /*** WRONG!!! ***/

20

Conversion Specifications

• A conversion specification can have the form %m.pX

or %-m.pX, where m and p are integer constants and

X is a letter.

• Both m and p are optional; if p is omitted, the period

that separates m and p is also dropped.

21

Conversion Specifications

• %m.pX or %-m.pX

• The minimum field width, m, specifies the minimum

number of characters to print.

• If the value to be printed requires fewer than m characters,

it is right-justified within the field.

– %4d displays the number 123 as •123. (• represents the

space character.)

• If the value to be printed requires more than m characters,

the field width automatically expands to the necessary size.

• Putting a minus sign in front of m causes left

justification.

– The specification %-4d would display 123 as 123•.

• Example: 05.c

22

Conversion Specifications

• %m.pX or %-m.pX

• The meaning of the precision, p, depends on the

choice of X, the conversion specifier.

• The d specifier is used to display an integer in

decimal form.

– p indicates the minimum number of digits to display

(extra zeros are added to the beginning of the number

if necessary).

– If p is omitted, it is assumed to be 1.

– Example: 06.c

23

Conversion Specifications

• Conversion specifiers for floating-point numbers:

e — Exponential format. p indicates how many digits

should appear after the decimal point (the default is 6). If p

is 0, no decimal point is displayed.

f — “Fixed decimal” format. p has the same meaning as

for the e specifier.

g — Display a floating-point number in either exponential

format or fixed decimal format, depending on the number’s

size. p indicates the maximum number of significant digits.

• Example: 07.c

24

Program: Using printf to Format Numbers

• The tprintf.c program uses printf to

display integers and floating-point numbers in

various formats.

25

tprintf.c

/* Prints int and float values in various formats */

#include <stdio.h>

int main(void)

{

int i;

float x;

i = 40;

x = 839.21f;

printf("|%d|%5d|%-5d|%5.3d|\n", i, i, i, i);

printf("|%10.3f|%10.3e|\n", x, x);

return 0;

}

• Output:

|40| 40|40 | 040|

| 839.210| 8.392e+02|

26

Escape Sequences

• The \n code that used in format strings is called

an escape sequence.

• Escape sequences enable strings to contain

nonprinting (control) characters and characters

that have a special meaning (such as ").

• A partial list of escape sequences:

Alert (bell) \a

Backspace \b

New line \n

Horizontal tab \t

27

Escape Sequences

• A string may contain any number of escape

sequences:

printf("Item\tUnit\tPurchase\n\tPrice\tDate\n");

• Executing this statement prints a two-line heading:

Item Unit Purchase

Price Date

28

Escape Sequences

• Double quotation mark: "

• Another common escape sequence is \", which

represents the " character: (08.c)

printf("\"Hello World!\"");

/* prints "Hello World!" */

• Backslash: \

• To print a single \ character, put two \ characters

in the string:

printf("\\");

/* prints one \ character */

29

The scanf Function

• scanf reads input according to a particular format.

– “pattern-matching” function that tries to match up groups of

input characters with conversion specifications

• A scanf format string may contain both ordinary

characters and conversion specifications.

scanf("%d%f", &i, &j);

scanf("%d-%f", &i, &j);

• The conversions specifications allowed with scanf

are essentially the same as those used with printf.

30

The scanf Function

• In many cases, a scanf format string will contain

only conversion specifications:

int i, j;

float x, y;

scanf("%d%d%f%f", &i, &j, &x, &y);

• Sample input:

1 -20 .3 -4.25

scanf will assign 1, –20, 0.300000, and –4.250000

to i, j, x, and y, respectively.

31

The scanf Function

• When using scanf, the programmer must check that

the number of conversion specifications matches the

number of input variables and that each conversion is

appropriate for the corresponding variable.

int i;

float j;

scanf("%d%f", &i, &j);

• & symbol, which normally precedes each variable in a

scanf call.

• The & is usually (but not always) required, and it’s the

programmer’s responsibility to remember to use it.
32

How scanf Works

• scanf tries to match groups of input characters with

conversion specifications in the format string.

• For each conversion specification, scanf tries to

locate an item of the appropriate type in the input data,

skipping blank space if necessary.

• scanf then reads the item, stopping when it reaches

a character that can’t belong to the item.

– If the item was read successfully, scanf continues

processing the rest of the format string.

– If not, scanf returns immediately.
33

How scanf Works
• As it searches for the beginning of a number, scanf

ignores white-space characters (space, horizontal and

vertical tab, form-feed, and new-line).

• A call of scanf that reads four numbers:

scanf("%d%d%f%f", &i, &j, &x, &y);

• The numbers can be on one line or spread over several

lines:
1

-20 .3

-4.25

34

How scanf Works

• When asked to read an integer, scanf first

searches for a digit, a plus sign, or a minus sign; it

then reads digits until it reaches a nondigit.

• When asked to read a floating-point number,

scanf looks for
– a plus or minus sign (optional), followed by

– digits (possibly containing a decimal point), followed by

– an exponent (optional). An exponent consists of the

letter e (or E), an optional sign, and one or more digits.

• %e and %f are interchangeable when used with

scanf.

35

How scanf Works

• When scanf encounters a character that can’t be

part of the current item, the character is “put back”

to be read again during the scanning of the next

input item or during the next call of scanf.

36

How scanf Works

• Sample input:

1-20.3-4.25

• The call of scanf is the same as before:

scanf("%d%d%f%f", &i, &j, &x, &y);

• Here’s how scanf would process the new input:

– %d. Stores 1 into i and puts the - character back.

– %d. Stores –20 into j and puts the . character back.

– %f. Stores 0.3 into x and puts the - character back.

– %f. Stores –4.25 into y and puts the new-line character

back.

37

How scanf Works

• Sample input: (09.c)

1-20.3-4.25

• The call of scanf is the same as before:

scanf("%d%d%f%d", &i, &j, &x, &y);

• Here’s how scanf would process the new input:

– %d. Stores 1 into i and puts the - character back.

– %d. Stores –20 into j and puts the . character back.

– %f. Stores 0.3 into x and puts the - character back.

– %d. Stores –4 into y and puts the point back.

38

