
Application Layer

Instructor: C. Pu (Ph.D., Assistant Professor)

Lecture 05

puc@marshall.edu

 Suppose you have an idea for a new network app.
 app. might be a great service to humanity
 app. might please your professor
 app. might bring you great wealth
 app. might be fun to develop

 How do you transform the idea into a real-world network app.?

Creating a Network App

 the core of netw. app. dev. is writing
programs that
 run on different end systems
 communicate with each other over

network
 e.g., web app.

 browser program in user’s host
 web server program in web server host

 e.g., p2p file-sharing
 program in each host that participates

in the file-sharing community
 program might be similar or

identical

Creating a Network App
application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

 when developing netw. app., write
software that runs on multiple end
systems
 program in C, Java, or Python

 no need to write software for
network-core devices
 network-core devices *do not* run

user applications
 network-core devices function at

lower layers – network layer and
below

 applications on end systems allows for
rapid app development, propagation

Creating a Network App
application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

Network Application Architectures

 Before diving into coding, what is the architecture plan for your
app.?

 application architecture vs. network architecture
 network architecture: the five-layer Internet architecture discussed before

 for app. dev., it is fixed and provides a set of service to app.

 application architecture
 designed by the application developer
 dictates how the application is structured over the various end

systems

 choosing application architecture
 client-server
 peer-to-peer (P2P)

Client-Server Architecture

 server:
 always-on host

 services requests from other hosts
 e.g., web server services requests from

browsers running on client hosts
 when receiving a request, it responds

with requested object
 fixed, well-known, permanent IP address

 client can always contact server

 clients:
 communicate with server
 do not communicate directly with each other
 may be intermittently connected
 may have dynamic IP addresses

client/server

Client-Server Architecture

 a single-server is not enough (become
overwhelmed with large network traffic)
 data center

 host a large number of servers
 TikTok, WeChat, Google, …
 Google has 30 to 50 data centers

 handle search, YouTube, Gmail, and
other services

client/server

Google Data Centers

 minimal (or no) reliance on dedicated server

 application exploits direct communications
between pairs of intermittently connected
hosts, called peers
 peers are not owned by the service provider
 peers are users’ desktop and laptop
 end hosts in home, univ., and office

 communicating without passing through a
dedicated server, the architecture is called
peer-to-peer
 e.g., file sharing application (BitTorrent)

Pure P2P Architecture

peer-peer

 before building netw. app., you need to understand how the
programs running in multiple end systems communicate with
each other

 it is not actually programs but processes that communicate
 process: program running within a host

 within same host, two processes communicate using inter-process
communication (defined by OS)

 processes in different hosts communicate by exchanging messages
across the computer network
 a sending process creates and sends messages into the network
 a receiving process receives these messages and responds by

sending messages back

Processes Communicating

 a netw. app. consists of pairs of processes that send msgs to each other
over a network
 Web application: client browser process vs. Web server process
 P2P file-sharing: a file is transferred from a process in one peer to a process

in another peer

 client process vs. server process
 who is client and server in Web and P2P?
 client process: process that initiates communication
 server process: process that waits to be contacted

 in some applications, a process can be both a client and a server
 p2p file sharing

 in any given communication session, one client process and one server
process

Client and Server Processes

Client and Server Processes

In the context of a communication session between a pair of processes,
the process that initiates the communication (that is, initially contacts
the other process at the beginning of the session) is labeled as the client.
The process that waits to be contacted to begin the session is the server.

 Most applications consist of pairs of communicating processes,
with the two processes in each pair sending messages to each
other

 Any message sent from one process to another must go through
the underlying network

 A process sends messages into, and receives messages from, the
network through a software interface called a socket

 Analogy,
 house ~ process; door ~ socket

Sockets

Sockets

Internet

controlled
by OS

controlled by
app developer

transport

application

physical
link

network

process

transport

application

physical
link

network

process
socket

socket communication between two process that communicate
over the Internet

socket: the interface between application layer and transport layer

 to receive messages, process must
have identifier

 host device has unique 32-bit IP
address

 Identifier includes both IP address
and port numbers associated with
process on host.
 e.g.,

 HTTP server: 80
 Mail server: 25

 to send HTTP message to
gaia.cs.umass.edu web server:
 IP address: 128.119.245.12
 port number: 80

Addressing Processes

process

TCP with
buffers,
variables

socket

host or
server

process

TCP with
buffers,
variables

socket

host or
server

Internet

controlled
by OS

controlled by
app developer

 socket: the interface between the application process and the
transport-layer protocol
 Application pushes message through the socket
 Transport-layer protocol gets messages to the socket of the

receiving process

 many networks provide more than one transport-layer protocols

 for application, choose one of the available protocols
 study the services provided by the protocols
 pick the protocol with the services that best match application’s

needs

Transport Services Available to
Applications

 reliable data transfer
 packet get lost

 overflow buffer
 discarded by end host

 for some app., packet lost can be serious
 Email, file transfer, …

 guarantee: the data sent by one host is delivered correctly and
completely to the other host
 reliable data transfer

 if transport-layer protocol does not provide reliable data transfer
 loss-tolerant application

Transport Services Available to
Applications

 timing
 some apps (e.g., Internet telephony, interactive games) require low delay

to be “effective”
 guarantee: every bit arrives at the receiver’s socket no more than 100

msec later

 throughput
 some apps (e.g., multimedia) require minimum amount of throughput to

be “effective”
 other apps (“elastic apps”) make use of whatever throughput they get
 guarantee: available throughput at some specified rate

 security
 Encryption, data integrity, …

Transport Services Available to
Applications

Transport Services Provided by the
Internet

Application

file transfer
e-mail

Web documents
real-time audio/video

stored audio/video
interactive games

text messaging

Data loss

no loss
no loss
no loss
loss-tolerant

loss-tolerant
loss-tolerant
no loss

Throughput

elastic
elastic
elastic
audio: 5kbps-1Mbps
video:10kbps-5Mbps
same as above
few kbps up
elastic

Time Sensitive

no
no
no
yes, 100’s msec

yes, few secs
yes, 100’s msec
yes and no

Internet Transport Protocols Services

 TCP service:
 connection-oriented: setup required

between client and server
processes

 reliable transport: between sending
and receiving process

 flow control: sender won’t
overwhelm receiver

 congestion control: throttle sender
when network overloaded

 does not provide: timing, minimum
throughput guarantees, security

 UDP service:
 connectionless: between sending

and receiving process
 unreliable data transfer:

between sending and receiving
process

 does not provide: connection
setup, reliability, flow control,
congestion control, timing,
throughput guarantee, or
security

Internet apps:
Application, Transport Protocols

Application

e-mail
remote terminal access

Web
file transfer

streaming multimedia

Internet telephony

Application
layer protocol

SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]
FTP [RFC 959]
HTTP (e.g. Youtube),
RTP [RFC 1889]
SIP, RTP, proprietary
(e.g., Skype)

Underlying
transport protocol

TCP
TCP
TCP
TCP
TCP or UDP

TCP or UDP

 an application-layer protocol defines
 The types of messages exchanged, for example, request messages

and response messages
 The syntax of the various message types, such as the fields in the

message and how the fields are delineated
 The semantics of the fields, that is, the meaning of the information

in the fields
 Rules for determining when and how a process sends messages and

responds to messages

Application-Layer Protocols

An application-layer protocol defines how an application’s process,
running on different end systems, pass messages to each other.

 HyperText Transfer Protocol (HTTP)
 Web’s application-layer protocol
 at the heart of the Web

 HTTP is implemented in two programs:
 Client program
 Server program

 client program and server program
 executing on different end systems
 talking to each other by exchanging HTTP messages

 HTTP defines
 the structure of message
 how the client and server exchange the messages

HTTP

 Web page consists of objects
 object can be HTML file, JPEG image, Java applet, audio file,…

 Web page consists of base HTML-file which includes several
referenced objects
 each object is addressable by a URL
 example URL:

www.someschool.edu/someDept/pic.gif

host name path name

Web and HTTP

HTTP: hypertext transfer protocol
 Web’s application layer protocol

 client/server model
 client: browser that requests, receives,

“displays” Web objects
 server: Web server sends objects in

response to requests

HTTP Overview

PC running
Firefox browser

server
running

Apache Web
server

iPhone running
Safari browser

HTTP uses TCP:
 client initiates TCP connection (creates socket) to server, port# 80
 server acceptsTCP connection from client
 HTTP messages (application-layer protocol messages) exchanged between browser

(HTTP client) and Web server (HTTP server)
 TCP connection closed

HTTP Overview (cont.)

Internet

controlled
by OS

controlled by
app developer

transport

application

physical
link

network

process

transport

application

physical
link

network

process
socket

HTTP uses TCP:
 client initiates TCP connection

(creates socket) to server, port# 80
 server accepts TCP connection from

client
 HTTP messages (application-layer

protocol messages) exchanged
between browser (HTTP client) and
Web server (HTTP server)

 TCP connection closed

HTTP is “stateless”
 server maintains no information

about past client requests
 if a client asks for the same

object in a while, the server will
server the object to client

Protocols that maintain “state” are
complex!
 past history (state) must be maintained
 if server/client crashes, their views of

“state” may be inconsistent, must be
reconciled

HTTP Overview (cont.)

	Application Layer
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26

