
Application Layer

Instructor: C. Pu (Ph.D., Assistant Professor)

Lecture 05

puc@marshall.edu

 Suppose you have an idea for a new network app.
 app. might be a great service to humanity
 app. might please your professor
 app. might bring you great wealth
 app. might be fun to develop

 How do you transform the idea into a real-world network app.?

Creating a Network App

 the core of netw. app. dev. is writing
programs that
 run on different end systems
 communicate with each other over

network
 e.g., web app.

 browser program in user’s host
 web server program in web server host

 e.g., p2p file-sharing
 program in each host that participates

in the file-sharing community
 program might be similar or

identical

Creating a Network App
application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

 when developing netw. app., write
software that runs on multiple end
systems
 program in C, Java, or Python

 no need to write software for
network-core devices
 network-core devices *do not* run

user applications
 network-core devices function at

lower layers – network layer and
below

 applications on end systems allows for
rapid app development, propagation

Creating a Network App
application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

Network Application Architectures

 Before diving into coding, what is the architecture plan for your
app.?

 application architecture vs. network architecture
 network architecture: the five-layer Internet architecture discussed before

 for app. dev., it is fixed and provides a set of service to app.

 application architecture
 designed by the application developer
 dictates how the application is structured over the various end

systems

 choosing application architecture
 client-server
 peer-to-peer (P2P)

Client-Server Architecture

 server:
 always-on host

 services requests from other hosts
 e.g., web server services requests from

browsers running on client hosts
 when receiving a request, it responds

with requested object
 fixed, well-known, permanent IP address

 client can always contact server

 clients:
 communicate with server
 do not communicate directly with each other
 may be intermittently connected
 may have dynamic IP addresses

client/server

Client-Server Architecture

 a single-server is not enough (become
overwhelmed with large network traffic)
 data center

 host a large number of servers
 TikTok, WeChat, Google, …
 Google has 30 to 50 data centers

 handle search, YouTube, Gmail, and
other services

client/server

Google Data Centers

 minimal (or no) reliance on dedicated server

 application exploits direct communications
between pairs of intermittently connected
hosts, called peers
 peers are not owned by the service provider
 peers are users’ desktop and laptop
 end hosts in home, univ., and office

 communicating without passing through a
dedicated server, the architecture is called
peer-to-peer
 e.g., file sharing application (BitTorrent)

Pure P2P Architecture

peer-peer

 before building netw. app., you need to understand how the
programs running in multiple end systems communicate with
each other

 it is not actually programs but processes that communicate
 process: program running within a host

 within same host, two processes communicate using inter-process
communication (defined by OS)

 processes in different hosts communicate by exchanging messages
across the computer network
 a sending process creates and sends messages into the network
 a receiving process receives these messages and responds by

sending messages back

Processes Communicating

 a netw. app. consists of pairs of processes that send msgs to each other
over a network
 Web application: client browser process vs. Web server process
 P2P file-sharing: a file is transferred from a process in one peer to a process

in another peer

 client process vs. server process
 who is client and server in Web and P2P?
 client process: process that initiates communication
 server process: process that waits to be contacted

 in some applications, a process can be both a client and a server
 p2p file sharing

 in any given communication session, one client process and one server
process

Client and Server Processes

Client and Server Processes

In the context of a communication session between a pair of processes,
the process that initiates the communication (that is, initially contacts
the other process at the beginning of the session) is labeled as the client.
The process that waits to be contacted to begin the session is the server.

 Most applications consist of pairs of communicating processes,
with the two processes in each pair sending messages to each
other

 Any message sent from one process to another must go through
the underlying network

 A process sends messages into, and receives messages from, the
network through a software interface called a socket

 Analogy,
 house ~ process; door ~ socket

Sockets

Sockets

Internet

controlled
by OS

controlled by
app developer

transport

application

physical
link

network

process

transport

application

physical
link

network

process
socket

socket communication between two process that communicate
over the Internet

socket: the interface between application layer and transport layer

 to receive messages, process must
have identifier

 host device has unique 32-bit IP
address

 Identifier includes both IP address
and port numbers associated with
process on host.
 e.g.,

 HTTP server: 80
 Mail server: 25

 to send HTTP message to
gaia.cs.umass.edu web server:
 IP address: 128.119.245.12
 port number: 80

Addressing Processes

process

TCP with
buffers,
variables

socket

host or
server

process

TCP with
buffers,
variables

socket

host or
server

Internet

controlled
by OS

controlled by
app developer

 socket: the interface between the application process and the
transport-layer protocol
 Application pushes message through the socket
 Transport-layer protocol gets messages to the socket of the

receiving process

 many networks provide more than one transport-layer protocols

 for application, choose one of the available protocols
 study the services provided by the protocols
 pick the protocol with the services that best match application’s

needs

Transport Services Available to
Applications

 reliable data transfer
 packet get lost

 overflow buffer
 discarded by end host

 for some app., packet lost can be serious
 Email, file transfer, …

 guarantee: the data sent by one host is delivered correctly and
completely to the other host
 reliable data transfer

 if transport-layer protocol does not provide reliable data transfer
 loss-tolerant application

Transport Services Available to
Applications

 timing
 some apps (e.g., Internet telephony, interactive games) require low delay

to be “effective”
 guarantee: every bit arrives at the receiver’s socket no more than 100

msec later

 throughput
 some apps (e.g., multimedia) require minimum amount of throughput to

be “effective”
 other apps (“elastic apps”) make use of whatever throughput they get
 guarantee: available throughput at some specified rate

 security
 Encryption, data integrity, …

Transport Services Available to
Applications

Transport Services Provided by the
Internet

Application

file transfer
e-mail

Web documents
real-time audio/video

stored audio/video
interactive games

text messaging

Data loss

no loss
no loss
no loss
loss-tolerant

loss-tolerant
loss-tolerant
no loss

Throughput

elastic
elastic
elastic
audio: 5kbps-1Mbps
video:10kbps-5Mbps
same as above
few kbps up
elastic

Time Sensitive

no
no
no
yes, 100’s msec

yes, few secs
yes, 100’s msec
yes and no

Internet Transport Protocols Services

 TCP service:
 connection-oriented: setup required

between client and server
processes

 reliable transport: between sending
and receiving process

 flow control: sender won’t
overwhelm receiver

 congestion control: throttle sender
when network overloaded

 does not provide: timing, minimum
throughput guarantees, security

 UDP service:
 connectionless: between sending

and receiving process
 unreliable data transfer:

between sending and receiving
process

 does not provide: connection
setup, reliability, flow control,
congestion control, timing,
throughput guarantee, or
security

Internet apps:
Application, Transport Protocols

Application

e-mail
remote terminal access

Web
file transfer

streaming multimedia

Internet telephony

Application
layer protocol

SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]
FTP [RFC 959]
HTTP (e.g. Youtube),
RTP [RFC 1889]
SIP, RTP, proprietary
(e.g., Skype)

Underlying
transport protocol

TCP
TCP
TCP
TCP
TCP or UDP

TCP or UDP

 an application-layer protocol defines
 The types of messages exchanged, for example, request messages

and response messages
 The syntax of the various message types, such as the fields in the

message and how the fields are delineated
 The semantics of the fields, that is, the meaning of the information

in the fields
 Rules for determining when and how a process sends messages and

responds to messages

Application-Layer Protocols

An application-layer protocol defines how an application’s process,
running on different end systems, pass messages to each other.

 HyperText Transfer Protocol (HTTP)
 Web’s application-layer protocol
 at the heart of the Web

 HTTP is implemented in two programs:
 Client program
 Server program

 client program and server program
 executing on different end systems
 talking to each other by exchanging HTTP messages

 HTTP defines
 the structure of message
 how the client and server exchange the messages

HTTP

 Web page consists of objects
 object can be HTML file, JPEG image, Java applet, audio file,…

 Web page consists of base HTML-file which includes several
referenced objects
 each object is addressable by a URL
 example URL:

www.someschool.edu/someDept/pic.gif

host name path name

Web and HTTP

HTTP: hypertext transfer protocol
 Web’s application layer protocol

 client/server model
 client: browser that requests, receives,

“displays” Web objects
 server: Web server sends objects in

response to requests

HTTP Overview

PC running
Firefox browser

server
running

Apache Web
server

iPhone running
Safari browser

HTTP uses TCP:
 client initiates TCP connection (creates socket) to server, port# 80
 server acceptsTCP connection from client
 HTTP messages (application-layer protocol messages) exchanged between browser

(HTTP client) and Web server (HTTP server)
 TCP connection closed

HTTP Overview (cont.)

Internet

controlled
by OS

controlled by
app developer

transport

application

physical
link

network

process

transport

application

physical
link

network

process
socket

HTTP uses TCP:
 client initiates TCP connection

(creates socket) to server, port# 80
 server accepts TCP connection from

client
 HTTP messages (application-layer

protocol messages) exchanged
between browser (HTTP client) and
Web server (HTTP server)

 TCP connection closed

HTTP is “stateless”
 server maintains no information

about past client requests
 if a client asks for the same

object in a while, the server will
server the object to client

Protocols that maintain “state” are
complex!
 past history (state) must be maintained
 if server/client crashes, their views of

“state” may be inconsistent, must be
reconciled

HTTP Overview (cont.)

	Application Layer
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26

