
Application Layer

Instructor: C. Pu (Ph.D., Assistant Professor)

Lecture 07

puc@marshall.edu 



 HTTP server is stateless
 simplifies server design
 prompt to dev. high-performance server handling simultaneous TCP

conn.

 However, it is desirable for server to identify users
 either wish to restrict user access
 or want to serve content as a function of the user identity

 HTTP cookies
 allow sites to keep track of users
 major commercial Web sites use cookies

User-Server State: Cookies



 Four components with cookie:
1) a cookie header line in HTTP response message
2) a cookie header line in HTTP request message
3) a cookie file kept on user’s end system, managed by user’s browser
4) a back-end database at Web site

User-Server State: Cookies



 Example:
 Susan always accesses Internet always from PC
 in the past she has visited the eBay.com
 visit Amazon.com for first time
 when initial HTTP request arrives at server site, server site creates:

 unique ID (or identification number)
 entry in back-end database for ID

 entry is indexed by the ID
 Amazon.com server responds HTTP response to Susan’s browser

 including a Set-cookie: header
 contains the ID

User-Server State: Cookies



 Example:
 when Susan’s browser receives the HTTP response

 appends a line to the cookie file
 hostname for server + the ID in the Set-cookie: header

 cookie file already has an entry for eBay
 as Susan continues to browser Amazon.com

 each time she requests a Web page
 consults cookie file
 extracts the ID for the site
 put a cookie header line with the ID in the HTTP request

 each HTTP request includes the header line

User-Server State: Cookies



client server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734 usual http request msg Amazon server
creates ID

1678 for user create
entry

usual http response
Set-cookie: 1678 

ebay 8734
amazon 1678

usual http request msg
cookie: 1678 cookie-

specific
action

accessebay 8734
amazon 1678

backend
database

Cookies: Keeping “state” (cont.)



 Web cache: a network entity
satisfies HTTP requests on the behalf
of an origin Web server
 has its own disk storage
 keeps copies of recently

requested objects in the storage
 user can configure browser: Web

accesses via Web cache
 browser sends all HTTP requests to 

Web cache
 if, object in Web cache: Web

cache returns object
 else, Web cache requests object

from origin server, then store
a copy and returns object to
client

Goal: satisfy client request without involving origin server

client

Proxy
server

client
origin 
server

origin 
server

Web Caches (Proxy Server)



 Web cache acts as both client and 
server at the same time
 server: when receiving request

from client and sending response
to a browser

 client: when sending request to
and receiving response from
origin server

More About Web Caching

client

Proxy
server

client
origin 
server

origin 
server



 typically cache is installed by ISP
(university, company, residential ISP)

 E.g.,
 Marshall Univ. install a cache on

its campus network and
configure all of the campus
browsers to point to the cache

More About Web Caching

client

Proxy
server

client
origin 
server

origin 
server



origin
servers

public
Internet

institutional
network 100 Mbps LAN

15 Mbps 
access link

institutional
Web cache

Caching Example (cont.) 



 Caching can reduce user-perceived response times, but
introduces a new problem
 the copy of object residing in the cache may be stale

 the object in the Web server may have been modified since the
copy was cached at the client

 HTTP has a mechanism to verify that the objects are up to date
 conditional GET

 an HTTP request message is called conditional GET message if
 (i) the request message uses the GET method and
 (ii) the request message includes an If-Modified-Since: header line

Conditional GET



 The copy of an object residing in the
proxy cache may be stale
 Need to verify

 Goal: don’t send object if proxy
cache has up-to-date cached
version

 Proxy cache: specify date of cached 
copy in HTTP request
If-modified-since: <date>

 server: response contains no object if 
cached copy is up-to-date: 
HTTP/1.0 304 Not Modified

client server

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0 

304 Not Modified

object 
not 

modified

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0 200 OK

<data>

object 
modified

Conditional GET

no data
not waste
bandwidth



 people has many identifiers
 SSN, name, passport #

 so too can Internet hosts
 hostname

 e.g., www.google.com, used by
humans

 difficult to process by router
 IP address (32 bit)

 Q: how to map between IP
addresses and name, and vice versa?
 a directory service that translates

hostnames to IP address

Domain Name System (DNS):
 distributed database implemented in

hierarchy of many DNS servers
 application-layer protocol allows

hosts to query the distributed
database for name

 DNS servers are often UNIX
machines running the Berkeley
Internet Name Domain software

 The DNS protocol runs over
UDP and users port 53

DNS: Domain Name System



 DNS is commonly used by other app. layer protocols to
 translate user-supplied hostnames to IP address

 E.g.: requesting the URL www.someschool.edu
1. the same user machine runs the client side of the DNS application.
2. the browser extracts the hostname, www.someschool.edu, from the

URL and passes the hostname to the client side of the DNS application.
3. the DNS client sends a query containing the hostname to a DNS

server.
4. the DNS client eventually receives a reply, which includes the IP address

for the hostname.
5. once the browser receives the IP address from DNS, it can initiate a

TCP connection to the HTTP server process located at port 80 at that
IP address.

DNS: Domain Name System

http://www.someschool.edu/
http://www.someschool.edu/


Simple design for DNS:
 one DNS server

 containing all mappings
 centralized design

Why not centralize DNS?
 single point of failure
 traffic volume
 distant centralized database
 maintenance

doesn’t scale!

DNS services
 hostname to IP address translation
 host aliasing

 canonical names
 relay1.west-coast.enterprise.com

 alias names
 enterprise.com or 
 www.enterprise.com   

 load distribution
 perform load distribution among replicated Web servers

 busy sites, e.g., cnn.com, are replicated over multiple
servers, each server running on a different end
system with a different IP address

 rotate the ordering of address within each reply 

DNS: Domain Name System (cont.)



Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu
DNS servers

umass.edu
DNS serversyahoo.com

DNS servers
amazon.com
DNS servers

pbs.org
DNS servers

Client wants IP for www.amazon.com; 1st approx:
 client queries a root server, which returns IP addresses for TLD servers for top-level domain

com

 client queries TLD server, which returns IP address of authoritative server for amazon.com
 client queries authoritative DNS server to get IP address for www.amazon.com

Distributed, Hierarchical Database

Top-Level Domain (TLD)
DNS Servers

Authoritative 
DNS Servers

No single DNS server has all of the mappings for all of the hosts in the Internet



 contacted by local name server that can not resolve name
 root name server:

 contacts lower-level name server if name mapping not known
 gets mapping
 returns mapping to local name server

DNS: Root Name Servers

over 400 root name
“ servers” worldwide, each
“server” replicated many times

a. Verisign, Los Angeles CA
(5 other sites)

b. USC-ISI Marina del Rey, CA
l. ICANN Los Angeles, CA

(41 other sites)

e. NASA Mt View, CA
f. Internet Software C.
Palo Alto, CA (and 48 other   
sites)

i. Netnod, Stockholm (37 other sites)

k. RIPE London (17 other sites)

m. WIDE Tokyo
(5 other sites)

c. Cogent, Herndon, VA (5 other sites)
d. U Maryland College Park, MD
h. ARL Aberdeen, MD
j. Verisign, Dulles VA (69 other sites )

g. US DoD Columbus, 
OH (5 other sites)

These root name servers are
managed by 13 different
organizations (labeled a through
m).



 top-level domain (TLD) servers:
 responsible for com, org, net, edu, etc, and all top-level

country domains uk, fr, ca, jp.
 Verisign Global Registry Services - maintains servers for com

TLD
 Educause - for eduTLD

 authoritative DNS servers:
 organization’s DNS servers, providing authoritative hostname to IP

mappings for organization’s servers (e.g.,Web, mail).
 can be maintained by organization or service provider
 most universities and large companies implement and maintain

their authoritative DNS server

TLD and Authoritative Servers



 a local DNS server does not strictly
belong to hierarchy

 each ISP (residential ISP, company,
university) has one local DNS server
 also called “default name server”

 when host makes DNS query, query is
sent to its local DNS server
 acts as proxy, forwards query into

hierarchy

Local DNS Server

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4

5

6

authoritative DNS server
dns.cs.umass.edu

7
8

TLD DNS server

eight DNS messages sent: four query message and four reply messages



 DNS name resolution example
 Host at cis.poly.edu wants IP

address for gaia.cs.umass.edu
 iterated query:

 contacted server replies with
name of server to contact

 “I don’t know this name, but ask
this server”

 recursive query:
 puts burden of name resolution

on contacted name server

Local DNS Server

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4

5

6

authoritative DNS server
dns.cs.umass.edu

7
8

TLD DNS server



Local DNS Server

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4

5

6

authoritative DNS server
dns.cs.umass.edu

7
8

TLD DNS server DNS name resolution example
 Host at cis.poly.edu wants IP

address for gaia.cs.umass.edu
 iterated query:

 contacted server replies with
name of server to contact

 “I don’t know this name, but ask
this server”

 recursive query:
 puts burden of name resolution

on contacted name server



 when a DNS server receives a DNS reply (containing a mapping from a
host name to an IP address), it can cache the mapping in its local cache
 a local DNS server can cache the IP addresses of TLD servers

 allow the local DNS server can bypass the root DNS servers in
a query chain

 thus root name servers not often visited
 cache entries timeout (disappear) after some time

DNS: Caching and Updating 
Records


	Application Layer
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22

