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Transport Services and Protocols

 transport-layer protocol provides
logical communication between app.
processes running on different hosts

 logical communication: (from
application’s perspective)
 seems like the hosts running the

processes were directly connected
 in reality, connected via numerous

routers and various link types

 app. processes use the logical
communication provided by transport
layer to send messages to each other
 free from the worry of the details of

the physical infrastructure carrying the
messages
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Transport Services and Protocols

 transport-layer protocols run in end
systems, not in network routers
 sender

 breaks app. messages into
segments, then passes to
network layer

 network router
 do not examine segments

 receiver
 reassembles segments into

messages, then passes to app. layer

 more than one transport protocol
available to app.
 Internet: TCP and UDP
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Transport  Vs. Network Layer

 Transport layer:
 logical communication between processes
 relies on network layer services

 transport layer lies above network layer

 Network layer:
 logical communication between hosts



Internet Transport Layer Protocols

 Two-distinct transport-layer protocols:
 UDP (User Datagram Protocol)

 provide unreliable, connectionless
service to the invoking app.

 TCP (Transmission Control Protocol)
 provide reliable, connection-

oriented service to the invoking app.

 When designing net. app., the app.
developer must specify one of these two
transport protocols
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Internet Transport Layer Protocols

 In an Internet context, the transport-
layer packet is called segment
 refers to the transport-layer packet for

TCP as a segment
 refers to the packet for UDP as a

datagram

 It is less confusing to refer to both TCP
and UDP packets as segment
 reserve the term datagram for the

network-layer packet
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Internet Transport Layer Protocols

 A few words about netw. layer
 netw. layer protocol

 Internet Protocol (IP)
 IP provides logical commu. between

hosts
 IP service: best-effort delivery service

 making its “best effort” to deliver
segments

 making no guarantees on
 segment delivery
 orderly delivery
 integrity of data

 IP service is said to be unreliable
service
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Internet Transport Layer Protocols

 The most fundamental responsibility of
UDP and TCP:
 extend IP‘s delivery service between

two end systems to a delivery
service between two processes
running on the end systems

 extending host-to-host delivery to
process-to-process delivery is called
transport-layer multiplexing and
demultiplexing
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Internet Transport Layer Protocols

 reliable, connection-oriented: TCP
 connection setup
 flow control
 sequence number
 acknowledgement
 timer
 congestion control

 a service for the Internet
 prevents any one TCP connection from swamping the links and

routers between comm. hosts
 strives to give each connection traversing a congested link an

equal share of the link bandwidth

 integrity checking

data delivered from sending side to 
receiving side correctly and in order 



Internet Transport Layer Protocols

 unreliable,  connectionless: UDP
 process-to-process delivery
 integrity checking

 including error detection fields in segments’ header

 unregulated traffic 
 app. can send at any rate it pleases, for as long as it pleases 



Multiplexing & Demultiplexing

 at the destination host,
 the transport layer receives segments from the network layer
 transport layer

 delivers the data in segments to the appropriate application
process running in the host

extending the host-to-host delivery service provided by the network layer to 
a process-to-process delivery service for applications running on the hosts

How?



Multiplexing & Demultiplexing

 socket
 door through which data passes from the network to the process

and through which data passes from the process to the network
 the transport layer in the receiving host does not actually deliver

data directly to a process, but instead to an intermediary socket
 because at any given time there can be more than one socket in

the receiving host, each socket has a unique identifier
 the format of the identifier depends on whether the socket is a UDP

or a TCP socket
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Use header info to deliver received segments
to correct socket

Demultiplexing at receiving host:

handle data from multiple sockets, add
transport header (later used for
demultiplexing), and create segments

Multiplexing at sending host:

Multiplexing & Demultiplexing



Multiplexing & Demultiplexing

 transport-layer multiplexing requires
 (i) sockets have unique identifiers
 (ii) each segment has special fields that indicate the socket to

which the segment is to be delivered

Q: How a receiving host directs an incoming transport layer segment
to the appropriate socket?



 Special fields
 source port # field
 destination port # field

 Each port # is a 16-bit number
 ranging from 0 to 65535
 0 to 1023

 well-known port #
 restricted for use

 How to implement demultiplexing?
 host uses IP addresses & port #

to direct segment to appropriate
socket

source port # dest port #

32 bits

application
data (message)

other header fields

TCP/UDP segment format

How Demultiplexing Works



 Host A wants to send data to Host B
 Host A

 create segment including data, source port #, destination port #
 UDP socket identified by two-tuple

 destination IP address
 destination port #

 pass the resulting segment to the network layer
 Host B 

 (transport layer) checks destination port # in segment
 directs UDP segment to socket with that port #

 IP datagrams with same destination port#, but different source IP addresses
and/or source port #,
 will be directed to same socket at destination
 because UDP socket is fully identified by two-tuple: destination IP address 

and destination port #

Connectionless (UDP) Demultiplexing



Client
IP:B

P2

client
IP: A

P1P1P3

server
IP: C

SP: 6428
DP: 9157

SP: 9157

DP: 6428

SP: 6428
DP: 5775

SP: 5775

DP: 6428

SP provides “return address”

Connectionless (UDP) Demultiplexing
(cont.)

What is the purpose of SP?



 TCP socket identified by 4-tuple:
 source IP address
 source port #
 destination IP address
 destination port #

 Demux: receiving host uses all four values to direct segment to
appropriate socket

 server host may support many simultaneousTCP sockets:
 each socket identified by its own 4-tuple

 Web servers have different sockets for each connecting client
 non-persistent HTTP will have different socket for each request

Connection-oriented (TCP) Demux



client
IP:B

P1

client
IP: A

P1P2P4

server
IP: C

SP: 9157

DP: 80
SP: 9157

DP: 80

P5 P6 P3

D-IP:C
S-IP: A

D-IP:C

S-IP: B

SP: 5775

DP: 80

D-IP:C
S-IP: B

Connection-oriented Demux (cont.)

per-connection 
HTTP processes

Three segments, all destined to IP address: C,
dest port: 80 are demultiplexed to different sockets.



 UDP does about as little as a trans. protocol can do
 multiplexing/demultiplexing function
 some light error checking
 nothing else

 app. chooses UDP?
 UDP takes messages from app. process
 attaches source and destination port #
 adds two other small fields
 passes the resulting segment to netw. layer
 netw. layer encapsulates segment into IP datagram
 makes a best-effort attempt to deliver to the receiving host
 segment arrives at the receiving host

 UDP uses destination port # to deliver to app. process

UDP: User Datagram Protocol 
[RFC 768]



 connectionless:
 no handshaking between UDP

sender and receiver
 each UDP segment handled

independently of others

Why is there a UDP?
 no connection establishment

(which can add delay)
 simple: no connection state at

sender and receiver
 small segment header

 TCP: 20 bytes of header
overhead

 UDP: 8 bytes
 no congestion control:

 UDP can blast away as fast as
desired

UDP: User Datagram Protocol 
[RFC 768]



 often used for streaming multimedia 
apps
 loss tolerant

 other UDP uses
 DNS

source port # dest port #

32 bits

Application
Data (message)

UDP segment format

length checksum
length, in

bytes of UDP
segment,
including

header

UDP: More



Sender:
 performs the 1s complement of

the sum of all the 16-bit words in
the segment
 with any overflow encountered

during the sum being wrapped
around

 puts the result in the checksum
field of UDP segment

Receiver:
 compute checksum of received

segment
 check if computed checksum equals

checksum field value:
 NO - error detected
 YES - no error detected

Goal: detect “errors” (e.g., flipped bits) in transmitted segment

UDP Checksum



 NOTE:
 when adding numbers, a carryout from the most significant bit 

needs to be added to the result

 example: add two 16-bit integers

1 1  1  1  0  0  1  1  0  0  1  1  0  0  1  1  0
1 1  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1

1  1  0  1  1  1  0  1  1  1  0  1  1  1  0  1  1

1 1  0  1  1  1  0  1  1  1  0  1  1  1  1  0  0
1 0  1  0  0  0  1  0  0  0  1  0  0  0  0  1  1

wraparound

sum

checksum

Internet Checksum Example



 NOTE:
 the addition had overflow, which was wrapped around

 The 1s complement is obtained by converting all the 0s to 1s and 
converting all the 1s to 0s

Internet Checksum Example
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