
Transport Layer

Instructor: C. Pu (Ph.D., Assistant Professor)

Lecture 08

puc@marshall.edu

Transport Services and Protocols

 transport-layer protocol provides
logical communication between app.
processes running on different hosts

 logical communication: (from
application’s perspective)
 seems like the hosts running the

processes were directly connected
 in reality, connected via numerous

routers and various link types

 app. processes use the logical
communication provided by transport
layer to send messages to each other
 free from the worry of the details of

the physical infrastructure carrying the
messages

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

Transport Services and Protocols

 transport-layer protocols run in end
systems, not in network routers
 sender

 breaks app. messages into
segments, then passes to
network layer

 network router
 do not examine segments

 receiver
 reassembles segments into

messages, then passes to app. layer

 more than one transport protocol
available to app.
 Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

Transport Vs. Network Layer

 Transport layer:
 logical communication between processes
 relies on network layer services

 transport layer lies above network layer

 Network layer:
 logical communication between hosts

Internet Transport Layer Protocols

 Two-distinct transport-layer protocols:
 UDP (User Datagram Protocol)

 provide unreliable, connectionless
service to the invoking app.

 TCP (Transmission Control Protocol)
 provide reliable, connection-

oriented service to the invoking app.

 When designing net. app., the app.
developer must specify one of these two
transport protocols

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

Internet Transport Layer Protocols

 In an Internet context, the transport-
layer packet is called segment
 refers to the transport-layer packet for

TCP as a segment
 refers to the packet for UDP as a

datagram

 It is less confusing to refer to both TCP
and UDP packets as segment
 reserve the term datagram for the

network-layer packet

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

Internet Transport Layer Protocols

 A few words about netw. layer
 netw. layer protocol

 Internet Protocol (IP)
 IP provides logical commu. between

hosts
 IP service: best-effort delivery service

 making its “best effort” to deliver
segments

 making no guarantees on
 segment delivery
 orderly delivery
 integrity of data

 IP service is said to be unreliable
service

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

Internet Transport Layer Protocols

 The most fundamental responsibility of
UDP and TCP:
 extend IP‘s delivery service between

two end systems to a delivery
service between two processes
running on the end systems

 extending host-to-host delivery to
process-to-process delivery is called
transport-layer multiplexing and
demultiplexing

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

Internet Transport Layer Protocols

 reliable, connection-oriented: TCP
 connection setup
 flow control
 sequence number
 acknowledgement
 timer
 congestion control

 a service for the Internet
 prevents any one TCP connection from swamping the links and

routers between comm. hosts
 strives to give each connection traversing a congested link an

equal share of the link bandwidth

 integrity checking

data delivered from sending side to
receiving side correctly and in order

Internet Transport Layer Protocols

 unreliable, connectionless: UDP
 process-to-process delivery
 integrity checking

 including error detection fields in segments’ header

 unregulated traffic
 app. can send at any rate it pleases, for as long as it pleases

Multiplexing & Demultiplexing

 at the destination host,
 the transport layer receives segments from the network layer
 transport layer

 delivers the data in segments to the appropriate application
process running in the host

extending the host-to-host delivery service provided by the network layer to
a process-to-process delivery service for applications running on the hosts

How?

Multiplexing & Demultiplexing

 socket
 door through which data passes from the network to the process

and through which data passes from the process to the network
 the transport layer in the receiving host does not actually deliver

data directly to a process, but instead to an intermediary socket
 because at any given time there can be more than one socket in

the receiving host, each socket has a unique identifier
 the format of the identifier depends on whether the socket is a UDP

or a TCP socket

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2P3 P4P1

host 1 host 2 host 3

= process= socket

Use header info to deliver received segments
to correct socket

Demultiplexing at receiving host:

handle data from multiple sockets, add
transport header (later used for
demultiplexing), and create segments

Multiplexing at sending host:

Multiplexing & Demultiplexing

Multiplexing & Demultiplexing

 transport-layer multiplexing requires
 (i) sockets have unique identifiers
 (ii) each segment has special fields that indicate the socket to

which the segment is to be delivered

Q: How a receiving host directs an incoming transport layer segment
to the appropriate socket?

 Special fields
 source port # field
 destination port # field

 Each port # is a 16-bit number
 ranging from 0 to 65535
 0 to 1023

 well-known port #
 restricted for use

 How to implement demultiplexing?
 host uses IP addresses & port #

to direct segment to appropriate
socket

source port # dest port #

32 bits

application
data (message)

other header fields

TCP/UDP segment format

How Demultiplexing Works

 Host A wants to send data to Host B
 Host A

 create segment including data, source port #, destination port #
 UDP socket identified by two-tuple

 destination IP address
 destination port #

 pass the resulting segment to the network layer
 Host B

 (transport layer) checks destination port # in segment
 directs UDP segment to socket with that port #

 IP datagrams with same destination port#, but different source IP addresses
and/or source port #,
 will be directed to same socket at destination
 because UDP socket is fully identified by two-tuple: destination IP address

and destination port #

Connectionless (UDP) Demultiplexing

Client
IP:B

P2

client
IP: A

P1P1P3

server
IP: C

SP: 6428
DP: 9157

SP: 9157

DP: 6428

SP: 6428
DP: 5775

SP: 5775

DP: 6428

SP provides “return address”

Connectionless (UDP) Demultiplexing
(cont.)

What is the purpose of SP?

 TCP socket identified by 4-tuple:
 source IP address
 source port #
 destination IP address
 destination port #

 Demux: receiving host uses all four values to direct segment to
appropriate socket

 server host may support many simultaneousTCP sockets:
 each socket identified by its own 4-tuple

 Web servers have different sockets for each connecting client
 non-persistent HTTP will have different socket for each request

Connection-oriented (TCP) Demux

client
IP:B

P1

client
IP: A

P1P2P4

server
IP: C

SP: 9157

DP: 80
SP: 9157

DP: 80

P5 P6 P3

D-IP:C
S-IP: A

D-IP:C

S-IP: B

SP: 5775

DP: 80

D-IP:C
S-IP: B

Connection-oriented Demux (cont.)

per-connection
HTTP processes

Three segments, all destined to IP address: C,
dest port: 80 are demultiplexed to different sockets.

 UDP does about as little as a trans. protocol can do
 multiplexing/demultiplexing function
 some light error checking
 nothing else

 app. chooses UDP?
 UDP takes messages from app. process
 attaches source and destination port #
 adds two other small fields
 passes the resulting segment to netw. layer
 netw. layer encapsulates segment into IP datagram
 makes a best-effort attempt to deliver to the receiving host
 segment arrives at the receiving host

 UDP uses destination port # to deliver to app. process

UDP: User Datagram Protocol
[RFC 768]

 connectionless:
 no handshaking between UDP

sender and receiver
 each UDP segment handled

independently of others

Why is there a UDP?
 no connection establishment

(which can add delay)
 simple: no connection state at

sender and receiver
 small segment header

 TCP: 20 bytes of header
overhead

 UDP: 8 bytes
 no congestion control:

 UDP can blast away as fast as
desired

UDP: User Datagram Protocol
[RFC 768]

 often used for streaming multimedia
apps
 loss tolerant

 other UDP uses
 DNS

source port # dest port #

32 bits

Application
Data (message)

UDP segment format

length checksum
length, in

bytes of UDP
segment,
including

header

UDP: More

Sender:
 performs the 1s complement of

the sum of all the 16-bit words in
the segment
 with any overflow encountered

during the sum being wrapped
around

 puts the result in the checksum
field of UDP segment

Receiver:
 compute checksum of received

segment
 check if computed checksum equals

checksum field value:
 NO - error detected
 YES - no error detected

Goal: detect “errors” (e.g., flipped bits) in transmitted segment

UDP Checksum

 NOTE:
 when adding numbers, a carryout from the most significant bit

needs to be added to the result

 example: add two 16-bit integers

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum

checksum

Internet Checksum Example

 NOTE:
 the addition had overflow, which was wrapped around

 The 1s complement is obtained by converting all the 0s to 1s and
converting all the 1s to 0s

Internet Checksum Example

	Transport Layer
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25

