
Transport Layer

Instructor: C. Pu (Ph.D., Assistant Professor)

Lecture 08

puc@marshall.edu

Transport Services and Protocols

 transport-layer protocol provides
logical communication between app.
processes running on different hosts

 logical communication: (from
application’s perspective)
 seems like the hosts running the

processes were directly connected
 in reality, connected via numerous

routers and various link types

 app. processes use the logical
communication provided by transport
layer to send messages to each other
 free from the worry of the details of

the physical infrastructure carrying the
messages

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

Transport Services and Protocols

 transport-layer protocols run in end
systems, not in network routers
 sender

 breaks app. messages into
segments, then passes to
network layer

 network router
 do not examine segments

 receiver
 reassembles segments into

messages, then passes to app. layer

 more than one transport protocol
available to app.
 Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

Transport Vs. Network Layer

 Transport layer:
 logical communication between processes
 relies on network layer services

 transport layer lies above network layer

 Network layer:
 logical communication between hosts

Internet Transport Layer Protocols

 Two-distinct transport-layer protocols:
 UDP (User Datagram Protocol)

 provide unreliable, connectionless
service to the invoking app.

 TCP (Transmission Control Protocol)
 provide reliable, connection-

oriented service to the invoking app.

 When designing net. app., the app.
developer must specify one of these two
transport protocols

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

Internet Transport Layer Protocols

 In an Internet context, the transport-
layer packet is called segment
 refers to the transport-layer packet for

TCP as a segment
 refers to the packet for UDP as a

datagram

 It is less confusing to refer to both TCP
and UDP packets as segment
 reserve the term datagram for the

network-layer packet

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

Internet Transport Layer Protocols

 A few words about netw. layer
 netw. layer protocol

 Internet Protocol (IP)
 IP provides logical commu. between

hosts
 IP service: best-effort delivery service

 making its “best effort” to deliver
segments

 making no guarantees on
 segment delivery
 orderly delivery
 integrity of data

 IP service is said to be unreliable
service

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

Internet Transport Layer Protocols

 The most fundamental responsibility of
UDP and TCP:
 extend IP‘s delivery service between

two end systems to a delivery
service between two processes
running on the end systems

 extending host-to-host delivery to
process-to-process delivery is called
transport-layer multiplexing and
demultiplexing

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

Internet Transport Layer Protocols

 reliable, connection-oriented: TCP
 connection setup
 flow control
 sequence number
 acknowledgement
 timer
 congestion control

 a service for the Internet
 prevents any one TCP connection from swamping the links and

routers between comm. hosts
 strives to give each connection traversing a congested link an

equal share of the link bandwidth

 integrity checking

data delivered from sending side to
receiving side correctly and in order

Internet Transport Layer Protocols

 unreliable, connectionless: UDP
 process-to-process delivery
 integrity checking

 including error detection fields in segments’ header

 unregulated traffic
 app. can send at any rate it pleases, for as long as it pleases

Multiplexing & Demultiplexing

 at the destination host,
 the transport layer receives segments from the network layer
 transport layer

 delivers the data in segments to the appropriate application
process running in the host

extending the host-to-host delivery service provided by the network layer to
a process-to-process delivery service for applications running on the hosts

How?

Multiplexing & Demultiplexing

 socket
 door through which data passes from the network to the process

and through which data passes from the process to the network
 the transport layer in the receiving host does not actually deliver

data directly to a process, but instead to an intermediary socket
 because at any given time there can be more than one socket in

the receiving host, each socket has a unique identifier
 the format of the identifier depends on whether the socket is a UDP

or a TCP socket

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2P3 P4P1

host 1 host 2 host 3

= process= socket

Use header info to deliver received segments
to correct socket

Demultiplexing at receiving host:

handle data from multiple sockets, add
transport header (later used for
demultiplexing), and create segments

Multiplexing at sending host:

Multiplexing & Demultiplexing

Multiplexing & Demultiplexing

 transport-layer multiplexing requires
 (i) sockets have unique identifiers
 (ii) each segment has special fields that indicate the socket to

which the segment is to be delivered

Q: How a receiving host directs an incoming transport layer segment
to the appropriate socket?

 Special fields
 source port # field
 destination port # field

 Each port # is a 16-bit number
 ranging from 0 to 65535
 0 to 1023

 well-known port #
 restricted for use

 How to implement demultiplexing?
 host uses IP addresses & port #

to direct segment to appropriate
socket

source port # dest port #

32 bits

application
data (message)

other header fields

TCP/UDP segment format

How Demultiplexing Works

 Host A wants to send data to Host B
 Host A

 create segment including data, source port #, destination port #
 UDP socket identified by two-tuple

 destination IP address
 destination port #

 pass the resulting segment to the network layer
 Host B

 (transport layer) checks destination port # in segment
 directs UDP segment to socket with that port #

 IP datagrams with same destination port#, but different source IP addresses
and/or source port #,
 will be directed to same socket at destination
 because UDP socket is fully identified by two-tuple: destination IP address

and destination port #

Connectionless (UDP) Demultiplexing

Client
IP:B

P2

client
IP: A

P1P1P3

server
IP: C

SP: 6428
DP: 9157

SP: 9157

DP: 6428

SP: 6428
DP: 5775

SP: 5775

DP: 6428

SP provides “return address”

Connectionless (UDP) Demultiplexing
(cont.)

What is the purpose of SP?

 TCP socket identified by 4-tuple:
 source IP address
 source port #
 destination IP address
 destination port #

 Demux: receiving host uses all four values to direct segment to
appropriate socket

 server host may support many simultaneousTCP sockets:
 each socket identified by its own 4-tuple

 Web servers have different sockets for each connecting client
 non-persistent HTTP will have different socket for each request

Connection-oriented (TCP) Demux

client
IP:B

P1

client
IP: A

P1P2P4

server
IP: C

SP: 9157

DP: 80
SP: 9157

DP: 80

P5 P6 P3

D-IP:C
S-IP: A

D-IP:C

S-IP: B

SP: 5775

DP: 80

D-IP:C
S-IP: B

Connection-oriented Demux (cont.)

per-connection
HTTP processes

Three segments, all destined to IP address: C,
dest port: 80 are demultiplexed to different sockets.

 UDP does about as little as a trans. protocol can do
 multiplexing/demultiplexing function
 some light error checking
 nothing else

 app. chooses UDP?
 UDP takes messages from app. process
 attaches source and destination port #
 adds two other small fields
 passes the resulting segment to netw. layer
 netw. layer encapsulates segment into IP datagram
 makes a best-effort attempt to deliver to the receiving host
 segment arrives at the receiving host

 UDP uses destination port # to deliver to app. process

UDP: User Datagram Protocol
[RFC 768]

 connectionless:
 no handshaking between UDP

sender and receiver
 each UDP segment handled

independently of others

Why is there a UDP?
 no connection establishment

(which can add delay)
 simple: no connection state at

sender and receiver
 small segment header

 TCP: 20 bytes of header
overhead

 UDP: 8 bytes
 no congestion control:

 UDP can blast away as fast as
desired

UDP: User Datagram Protocol
[RFC 768]

 often used for streaming multimedia
apps
 loss tolerant

 other UDP uses
 DNS

source port # dest port #

32 bits

Application
Data (message)

UDP segment format

length checksum
length, in

bytes of UDP
segment,
including

header

UDP: More

Sender:
 performs the 1s complement of

the sum of all the 16-bit words in
the segment
 with any overflow encountered

during the sum being wrapped
around

 puts the result in the checksum
field of UDP segment

Receiver:
 compute checksum of received

segment
 check if computed checksum equals

checksum field value:
 NO - error detected
 YES - no error detected

Goal: detect “errors” (e.g., flipped bits) in transmitted segment

UDP Checksum

 NOTE:
 when adding numbers, a carryout from the most significant bit

needs to be added to the result

 example: add two 16-bit integers

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum

checksum

Internet Checksum Example

 NOTE:
 the addition had overflow, which was wrapped around

 The 1s complement is obtained by converting all the 0s to 1s and
converting all the 1s to 0s

Internet Checksum Example

	Transport Layer
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25

