Transport Layer

Instructor: C. Pu (Ph.D., Assistant Professor)
Lecture 09

puc@marshall.edu

Principles of Reliable Data Transfer

= important in app., transport, link layers

top-10 list of important networking topics!

sending receiver
Orocess process
1

reliable chcnrmel)j

application
layer

fransport
layer

() provided service

Principles of Reliable Data Transfer (cont.)

= important in app., transport, link layers

top-10 list of important networking topics!

sending receiver
Orocess process
1

reliable chcnrmel)j

application
layer

fransport
layer

Junreliable Chonnel)i

(a) provided service (b) service implementation
m characteristics of unreliable channel will determine complexity of

reliable data transfer (rdt) protocol

Principles of Reliable Data Transfer (cont.)

= important in app., transport, link layers

top-10 list of important networking topics!

-
O
O O
O 5‘ senlng ‘recelver I
8 —= rocess process
O
dt d :
= reliable chc:nnel)j rat_send() deliver data()
8_ 5 reliable data reliable data
B > transfer protocol transfer protocol
% O (sending side) (receiving side)
= udt_send()i [packet | [packet| Irdt rev ()

Junreliable Chonnel)i

(a) provided service (b) service implementation
characteristics of unreliable channel will determine complexity of

reliable data transfer (rdt) protocol

o

Reliable Data Transfer: Getting Started

rdt_send(): called from above, (e.g., by
app.). Pass data to be
delivered to receiver upper layer

\ rdt send()

reliable data
fransfer protocol
(sending side)

deliver_data(): called by rdt to
deliver data to upper layer

/

data Tdeliver_data ()

reliable data
fransfer profocol
(receiving side)

udt_send ()} [pactke

packet Irdt_rcv ()

T—»()unrelioble channel)J

udt_send(): called by rdt,
to transfer packet over
unreliable channel to receiver

rdt_rcv(): called when packet arrives
on receiver side of channel

1N
MARSHALL

Reliable Data Transfer: Getting Started
(cont.)

. We'll:

= incrementally develop sender and receiver sides of reliable data
transfer protocol (rdt)

= consider only unidirectional data transfer
= but control info will flow on both directions!

= use finite state machines (FSM) to specify the behaviors of sender

and receiver
event causing state transition

RS actions taken on state transition

~
'
state: when in this —_— T
state”’, next state ovent
uniquely determined L
by next event)

o

rdt|.0: Reliable Transfer over a Reliable
Channel

= underlying channel perfectly reliable
= no bit errors
= no loss of packets
m separate FSMs for sender and receiver:
= sender sends data into underlying channel

= receiver reads data from underlying channel

rdt_send(data) by

packet = make_pkt(data)
udt_send(packet)

Wait for
call from
below

Wait for rdt_rcv(packet)

call from
above

extract (packet,data)
deliver_data(data)

sender receiver

with a perfectly reliable channel, there is no need for the receiver side
to provide any feedback to the sender since nothing can go wrong!

o

rdt2.0: Channel with Bit Errors

m consider a more realistic model
= underlying channel may flip bits in packet

= bit errors occur in the physical components of a network as a
packet is transmitted, propagates, or is buffered

= checksum to detect bit errors

= how people might deal with such a situation?
= conversation over a phone

= the message taker might say “OK” after each sentence has been
heard, understood, and recorded

= if the message taker hears garbled sentence, the message sender is
asked to repeat

rdt2.0: Channel with Bit Errors

= the question: how to recover from errors!?
m positive acknowledgements (ACKs):
= receiver explicitly tells sender that pkt received OK with ACKs
= negative acknowledgements (NAKs):
= receiver explicitly tells sender that pkt had errors with NAK
= sender retransmits pkt on receipt of NAK
= new mechanisms in rdt2.0 (beyond rdtl.0):
= error detection

m receiver feedback: control msgs (ACKs and NAKs) from receiver to
sender

= positive acknowledgement (ACKSs)

= negative acknowledgement (NAKS)

rdt2.0: FSM specification

rdt_send(data)

sndpkt = make_pkt(data, checksum)
udt_send(sndpkt)

Wait for
call from
above

rdt_rcv(rcvpkt) &&
isSNAK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

L

sender

receiver

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

udt_send(NAK)

Wait for
call from
below

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)

deliver_data(data)
udt_send(ACK)

o

rdt2.0: Operation with No Errors

rdt_send(data)

sndpkt = make_pkt(data, checksum)

udt send(sndpkt
rdt_rcv(rcvpkt) &&

Wait for isSNAK(revpkt)

call from
above

udt_send(sndpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
<
L

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

udt_send(NAK)

. C

Wait for
call from
below

rdt rcv(rcvpktL&&
notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt2.0: Error Scenario

rdt_send(data)

sndpkt = make_pkt(data, checksum)
udt send(sndpkt)

dt rcv(rcvpkt) &&

Wait for
call from
above

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

udt send(NAK)

udt_send(sndpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt) .
- Wait for
L call from

below

rdt rcv(rcvpkt) &&
notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

o

rdt2.0: FSM specification

rdt_send(data)

sndpkt = make_pkt(data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isSNAK (rcvpkt)

Wait for
call from
above

udt_send(sndpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
L

sender

stop and wait

sender sends one packet, then waits for receiver response.

sender will not send a new data until it is sure that the receiver has

correctly received the current packet.

receiver

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

udt_send(NAK)

Wait for
call from
below

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt2.0 has a Fatal Flaw!

= What happens if ACK/NAK corrupted?
= add checksum to ACK/NAK to detect errors
= more difficult question: how to recover from errors in ACK/NCK
= sender doesn’t know what happened at receiver!

= sender does not know whether or not the receiver has
correctly received the last piece of transmitted data

= can’t just retransmit: possible duplicate

m Handling duplicates:
= sender retransmits current pkt if ACK/NAK garbled
= sender adds sequence number, |-bit, to each pkt

= receiver discards (doesn’t deliver up) duplicate pkt

rdt2.1: Sender, handles garbled
ACK/NAKs

rdt_send(data)
sender

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isSNAK (rcvpkt))

udt_send(sndpkt)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

L

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

L
\,:\Véllz for Wait for
°r 1 f
rdt_rcv(rcvpkt) && NAK | caabov;om
(corrupt(rcvpkt) ||
isNAK (revpkt)) rdt_send(data)
udt_send(sndpkt) sndpkt = make_pkt(|, data, checksum)

udt_send(sndpkt)

rdt2.1: Receiver, handles garbled
ACK/NAKs

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)

receiver
\

rdt_rcv(rcvpkt) && (corrupt(rcvpkt) \\

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

not corrupt(rcvpkt) && <
has_seq/! (rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

&& has_seq0(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(NAK, chksum)

O udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seq0(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq| (rcvpkt)

out-of-order packet
extract(rcvpkt,data)

deliver_data(data)
sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt) .M

rdt2.|: Discussion

m Sender:
= seq # added to pkt
= two seq.#’s (0,1) will suffice. Why?
= must check if received ACK/NAK corrupted
= twice as many states

= state must “remember” whether “current” pkt has 0 or | seq.
#

m Receiver:
= must check if received packet is duplicate
= state indicates whether 0 or | is expected pkt seq #

» Note: receiver can not know if its last ACK/NAK received OK at
sender

o

rdt3.0: Channels with Errors and Loss

= new assumption: underlying channel can also lose packets (data or
ACKs)

= two additional concerns:
= how to detect packet loss?
= what to do when packet loss occurs?

checksum, seq. #,ACKs, retransmissions will be of help

m approach: sender waits “reasonable” amount of time for ACK
= detecting & recovering from lost packets from the sender side
= how long must the sender wait!?

= at least as long as a round trip time (RTT) between sender and
receiver

rdt3.0: Channels with Errors and Loss

i (cont.)

m approach: sender waits “reasonable” amount of time for ACK (cont.)

s retransmits if no ACK received in this time
= if pkt (or ACK) just delayed (not lost):

= retransmission will be duplicate, but use of seq. #’s already
handles this

= receiver must specify seq # of pkt being ACKed

= requires countdown timer (the sender):
= (l) start the timer each time when a packet is sent
= (2) respond to a timer interrupt

= (3) stop the timer

rdt3.0: Channels with Errors and Loss

i (cont.)

= from the sender’s point of view, the sender does NOT know whether

= a data packet was lost
= an ACK was lost
= if the packet or ACK was simple overly delayed

= =2 in all case, the sender just retransmits!!

rdt3.0: Sender

What about a receiver side!?

\
rdt_rcv(rcvpkt) \

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK (revpkt, 1)

stop_timer

timeout
udt_send(sndpkt) C

start_timer (/

rdt_rcv(rcvpkt) &&
(corrupt(revpkt) ||
isACK(rcvpkt,0))

L

call 0 from
above

rdt_send(data) rdt_rcv(rcvpkt) &&

(corrupt(revpkt) ||
isACK (revpkt, 1))

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

start_timer L
_—
timeout
udt_send(sndpkt)
start_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK (revpkt,0)

stop_timer

Wait for
call | from

above
/

rdt_rcv(rcvpkt)
L

rdt_send(data)

sndpkt = make_pkt(I, data, checksum)
udt_send(sndpkt)
start_timer

rdt3.0 in Action

sender receiver
okt |
send pkio) rcv pkio
[ACK send ACKO
rcv ACKO [
send pktl kt
[) [
rcv pkil
K] I ACK ! send ACK]
V.
send pkiO kKt g I
rcv pkio
I Ack lsend ACKO
[
\ 4 \ 4

(Q) operation with no loss

sender receiver
kt [
send pkiO 0 oV pkio
I ACK send ACKC

rcv ACKO

I
send pkt1] \%
| (loss) |
I I
I

fimeout _|
resend pki1 r%*l
rcv pkitl
[ACK ' send ACK
rcvACK o
send pkiO I

ktO

| ACK lsend ACKO
: v

(b) lost packet @

rdt3.0 in Action (cont.)

sender receiver
[okt
send pktO 0 oV ki
[send ACKO

rcv ACKO

send pktl
I\I rcv pkil

ACK send ACKT

| (loss) X
| | I
fimeout okt 1
resend pki 1| [Cv pkil .
ACK (detect duplicate)
I Isend ACK]
rcvACK] "
send pktO I I
rcv pktO
ACK I send ACKO
(c) lost ACK

sender receiver

send pkiO I Kf o

rcv pktO
send ACKO

rcv ACKO
send pktl v ki1
I send ACKI1
I I
fimeout I I
resend pkitl
rcv pktl
rcvACK (detect duplicate’
send pki0 I Isend ACKI
rcv pkio
['send ACKO
ACK g
I

Do nothing!!

v

(d) premature timeout

oy

Performance of rdt3.0

» rdt3.0 works, but performance stinks

= For example: | Gbps link, 15 ms end-to-end delay, | KB packet:

L (packet length in bits) _ 8000 bit/pkt
R (transmission rate, bps) | 079 bit/sec

transmit = 8 microsec

m RTT: the speed-of-light propagation delay, approximately 30 msec

= the time t when the last bit of the packet emerging at the receiver

t = RTT/2 +L/R =15.008 msec

m When the ACK will come back?
t = RTT + L/R =30.008 msec

rdt3.0: stop-and-wait Operation

s U 4 utilization — fraction of time sender busy sending

sender receiver

first packet bit transmitted, t = 0 —so- -
last packet bit transmitted, t = L / RT

first packet bit arrives

30 msec RTT —last packet bit arrives, send ACK

ACK arrives, send next|
packet,t =RTT +L/R

y ._ L/R _ .008

dor™ — = 0.00027
sender RTT+L/R 30008

o

Pipelined Protocols

m pipelining: sender allows multiple, “in-flight”, yet-to-be-acknowledged
pkts. sending multiple pkts without waiting for acknowledgments

= range of sequence numbers must be increased
= buffering at sender and/or receiver
= two generic forms of pipelined protocols: Go-Back-N, selective repeat

<+— ACK packets

(a) a stop-and-wait protocol in operation (b) a pipelined protocol in operation .M

Pipelining: Increased Utilization

sender receiver

first packet bit transmitted, t = 0 —sc----- - oo
last bit transmitted,t =L /R

first packet bit arrives
last packet bit arrives, send ACK

last bit of 2" packet arrives, send ACK
last bit of 37 packet arrives, send ACK

RTT

ACK arrives, send next|
packet,t = RTT + L/ R: --------------

4

: Increase utilization
. / by a factor of 3!

U _ 3*L/R .024

Sender'_ RTT"" L / R B 30.008

= 0.0008

o

	Transport Layer
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27

