
Transport Layer

Instructor: C. Pu (Ph.D., Assistant Professor)

Lecture 09

puc@marshall.edu

Principles of Reliable Data Transfer

 important in app., transport, link layers
 top-10 list of important networking topics!

Principles of Reliable Data Transfer (cont.)

 important in app., transport, link layers
 top-10 list of important networking topics!

 characteristics of unreliable channel will determine complexity of
reliable data transfer (rdt) protocol

Principles of Reliable Data Transfer (cont.)

 important in app., transport, link layers
 top-10 list of important networking topics!

 characteristics of unreliable channel will determine complexity of
reliable data transfer (rdt) protocol

Reliable Data Transfer: Getting Started

send
side

receive
side

rdt_send(): called from above, (e.g., by
app.). Pass data to be

delivered to receiver upper layer

udt_send(): called by rdt,
to transfer packet over

unreliable channel to receiver

rdt_rcv(): called when packet arrives
on receiver side of channel

deliver_data(): called by rdt to
deliver data to upper layer

Reliable Data Transfer: Getting Started
(cont.)

 We’ll:
 incrementally develop sender and receiver sides of reliable data

transfer protocol (rdt)
 consider only unidirectional data transfer

 but control info will flow on both directions!
 use finite state machines (FSM) to specify the behaviors of sender

and receiver

state
1

state
2

state: when in this
“state”, next state

uniquely determined
by next event

event causing state transition
actions taken on state transition

event
L

rdt1.0: Reliable Transfer over a Reliable
Channel

 underlying channel perfectly reliable
 no bit errors
 no loss of packets

 separate FSMs for sender and receiver:
 sender sends data into underlying channel
 receiver reads data from underlying channel

Wait for
call from

above
packet = make_pkt(data)
udt_send(packet)

rdt_send(data)

sender

extract (packet,data)
deliver_data(data)

Wait for
call from
below

rdt_rcv(packet)

receiver
with a perfectly reliable channel, there is no need for the receiver side

to provide any feedback to the sender since nothing can go wrong!

rdt2.0: Channel with Bit Errors

 consider a more realistic model
 underlying channel may flip bits in packet

 bit errors occur in the physical components of a network as a
packet is transmitted, propagates, or is buffered

 checksum to detect bit errors

 how people might deal with such a situation?
 conversation over a phone
 the message taker might say “OK” after each sentence has been

heard, understood, and recorded
 if the message taker hears garbled sentence, the message sender is

asked to repeat

rdt2.0: Channel with Bit Errors

 the question: how to recover from errors?
 positive acknowledgements (ACKs):

 receiver explicitly tells sender that pkt received OK with ACKs
 negative acknowledgements (NAKs):

 receiver explicitly tells sender that pkt had errors with NAK
 sender retransmits pkt on receipt of NAK

 new mechanisms in rdt2.0 (beyond rdt1.0):
 error detection
 receiver feedback: control msgs (ACKs and NAKs) from receiver to

sender
 positive acknowledgement (ACKs)
 negative acknowledgement (NAKs)

rdt2.0: FSM specification

Wait for
call from

above

sndpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)Wait for

ACK or
NAK

sender

udt_send(NAK)

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

Wait for
call from
below

receiverrdt_send(data)

L

rdt2.0: Operation with No Errors

Wait for
call from

above

sndpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

Wait for
ACK or

NAK

Wait for
call from
below

rdt_send(data)

L

rdt2.0: Error Scenario

Wait for
call from

above

sndpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

Wait for
ACK or

NAK

Wait for
call from
below

rdt_send(data)

L

rdt2.0: FSM specification

Wait for
call from

above

sndpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
isNAK(rcvpkt)

Wait for
ACK or

NAK

sender

udt_send(NAK)

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

Wait for
call from
below

receiver
rdt_send(data)

L

sender sends one packet, then waits for receiver response.
sender will not send a new data until it is sure that the receiver has
correctly received the current packet.

stop and wait

rdt2.0 has a Fatal Flaw!

 What happens if ACK/NAK corrupted?
 add checksum to ACK/NAK to detect errors
 more difficult question: how to recover from errors in ACK/NCK
 sender doesn’t know what happened at receiver!

 sender does not know whether or not the receiver has
correctly received the last piece of transmitted data

 can’t just retransmit: possible duplicate
 Handling duplicates:

 sender retransmits current pkt if ACK/NAK garbled
 sender adds sequence number, 1-bit, to each pkt
 receiver discards (doesn’t deliver up) duplicate pkt

rdt2.1: Sender, handles garbled
ACK/NAKs

Wait for call
0 from
above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

Wait for
ACK or
NAK 0 udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isNAK(rcvpkt))

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isNAK(rcvpkt))

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)

rdt_send(data)

Wait for
ACK or
NAK 1

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

Wait for
call 1 from

above

L

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

L

sender

rdt2.1: Receiver, handles garbled
ACK/NAKs

Wait for
0 from
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Wait for
1 from
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq0(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seq0(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seq1(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

out-of-order packet

receiver

rdt2.1: Discussion

 Sender:
 seq # added to pkt
 two seq. #’s (0,1) will suffice. Why?
 must check if received ACK/NAK corrupted
 twice as many states

 state must “remember” whether “current” pkt has 0 or 1 seq.
#

 Receiver:
 must check if received packet is duplicate

 state indicates whether 0 or 1 is expected pkt seq #
 Note: receiver can not know if its last ACK/NAK received OK at

sender

rdt3.0: Channels with Errors and Loss

 new assumption: underlying channel can also lose packets (data or
ACKs)
 two additional concerns:

 how to detect packet loss?
 what to do when packet loss occurs?

 checksum, seq. #, ACKs, retransmissions will be of help

 approach: sender waits “reasonable” amount of time for ACK
 detecting & recovering from lost packets from the sender side
 how long must the sender wait?

 at least as long as a round trip time (RTT) between sender and
receiver

rdt3.0: Channels with Errors and Loss
(cont.)

 approach: sender waits “reasonable” amount of time for ACK (cont.)
 retransmits if no ACK received in this time
 if pkt (or ACK) just delayed (not lost):

 retransmission will be duplicate, but use of seq. #’s already
handles this

 receiver must specify seq # of pkt being ACKed
 requires countdown timer (the sender):

 (1) start the timer each time when a packet is sent
 (2) respond to a timer interrupt
 (3) stop the timer

rdt3.0: Channels with Errors and Loss
(cont.)

 from the sender’s point of view, the sender does NOT know whether
 a data packet was lost
 an ACK was lost
 if the packet or ACK was simple overly delayed
 in all case, the sender just retransmits!!

rdt3.0: Sender

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

Wait
for

ACK0

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,1))

Wait for
call 1 from

above

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,0))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)

stop_timer
stop_timer

udt_send(sndpkt)
start_timer

timeout

udt_send(sndpkt)
start_timer

timeout

rdt_rcv(rcvpkt)

Wait for
call 0 from

above

Wait
for

ACK1

L
rdt_rcv(rcvpkt)

L
L

L

What about a receiver side?

rdt3.0 in Action

rdt3.0 in Action (cont.)

Do nothing!!

Performance of rdt3.0

 rdt3.0 works, but performance stinks
 For example: 1 Gbps link, 15 ms end-to-end delay, 1KB packet:

 RTT: the speed-of-light propagation delay, approximately 30 msec
 the time t when the last bit of the packet emerging at the receiver

 When the ACK will come back?

T transmit = 8000 bit/pkt
10**9 bit/sec

= 8 microsec
L (packet length in bits)
R (transmission rate, bps)

=

t = RTT/2 + L/R = 15.008 msec

t = RTT + L/R = 30.008 msec

rdt3.0: stop-and-wait Operation

 U sender: utilization – fraction of time sender busy sending

U
sender =

.008
30.008

= 0.00027

L / R
RTT + L / R

=

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

30 msec

Pipelined Protocols

 pipelining: sender allows multiple, “in-flight”, yet-to-be-acknowledged
pkts. sending multiple pkts without waiting for acknowledgments
 range of sequence numbers must be increased
 buffering at sender and/or receiver
 two generic forms of pipelined protocols: Go-Back-N, selective repeat

Pipelining: Increased Utilization

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

U
sender =

.024
30.008

= 0.0008

3 * L / R
RTT + L / R

=

Increase utilization
by a factor of 3!

	Transport Layer
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27

