
Transport Layer

Instructor: C. Pu (Ph.D., Assistant Professor)

Lecture 10

puc@marshall.edu

Go-Back-N

 Sender:
 allow to transmit multiple packets without waiting for ACK

 constrained to N unack’ed packets in the pipeline

 Sender’s view of the sequence numbers in GBN

Go-Back-N

 send_base: the seq. number of the oldest unack’ed packet
 nextseqnum: the smallest unused seq. number
 [0, send_base - 1]: packets that have already been transmitted and

acked
 [send_base, nextseqnum - 1]: packets that have been sent but not yet

acked
 [nextseqnum, send_base + N -1]: packets can be sent immediately

Go-Back-N

 Sender:
 allow to transmit multiple packets without waiting for ACK

 constrained to N unack’ed packets in the pipeline
 “window” of up to N, consecutive unack’ed pkts allowed
 seq. number is carried in a fixed-length field in the packet header
 k-bit seq # in pkt header

 [0, 2k - 1]
 e.g., TCP: 32-bits seq #

GBN: Sender Extended FSM

Wait start_timer
udt_send(sndpkt[send_base])
udt_send(sndpkt[send_base+1])
…
udt_send(sndpkt[nextseqnum-1])

timeout

rdt_send(data)

if (nextseqnum < send_base+N) {
sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)
udt_send(sndpkt[nextseqnum])
if (send_base == nextseqnum)

start_timer
nextseqnum++

}
else

refuse_data(data)

send_base = getacknum(rcvpkt)+1
If (send_base == nextseqnum)

stop_timer
else

start_timer

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base=1
nextseqnum=1

rdt_rcv(rcvpkt)
&& corrupt(rcvpkt)

L

L

first packet in the window N

GBN: Receiver Extended FSM

 ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK”
 may receive duplicate ACKs (see receiver)

 timer for each in-flight pkt
 timeout(n): retransmit pkt n and all higher seq # pkts in window
 ACK-only: always send ACK for correctly-received pkt with highest in-order seq #

 may generate duplicate ACKs
 need only remember expectedseqnum

Wait

udt_send(sndpkt)

default

rdt_rcv(rcvpkt)
&& notcurrupt(rcvpkt)
&& hasseqnum(rcvpkt,expectedseqnum)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedseqnum++

expectedseqnum=1
sndpkt =
make_pkt(expectedseqnum,ACK,chksum)

L

GBN: Receiver Extended FSM (cont.)

 out-of-order pkt:
 packet n is expected, but packet n+1 arrives
 discard (don’t buffer) -> no receiver buffering! why?

 based on GBN, the sender transmit the packet
 adv.?

 simplicity of receiver buffering
 disadv.?

 throwing away a correctly received packet
 subsequent retransmission of that packet might be lost or

garbled
 even more retransmission would be required

GBN in Action

don’t buffer

Selective Repeat

 In GBN protocol,
 allow the sender to potentially “fill the pipeline”
 avoiding the channel utilization problem
 suffer from performance problem, e.g. many packets in the

pipeline, but a single packet error?
 retransmit a large number of packets (many unnecessarily)

Selective Repeat (cont.)

 selective-repeat protocol avoids unnecessary retransmissions by having
the sender retransmit only those packets that it suspects were
received in error at the receiver

 receiver individually acknowledges all correctly received pkts, whether or
not they are in order
 buffers pkts, as needed, for eventual in-order delivery to upper

layer
 sender only resends pkts for which ACK not received

 sender timer for each unACKed pkt
 sender window:

 N consecutive seq #’s
 again limits seq #s of sent, unACKed pkts

Selective Repeat: Sender, Receiver
Windows

Selective Repeat (cont.)

 Sender:
 data received from above :

 if next available seq # in window, send pkt
 timeout(n):

 resend pkt n, restart timer
 ACK(n) in [send_base, send_base+N-1]:

 mark pkt n as received
 If the packet’s sequence# == send_base

 advance the window base to the unacked packet with the
smallest sequence #

Selective Repeat (cont.)

 Receiver:
 pkt n in [rcv_base, rcv_base+N-1]

 send ACK(n)
 out-of-order: buffering
 in-order: deliver (also deliver buffered, in-order pkts), advance window

to next not-yet-received pkt
 pkt n in [rcv_base-N, rcv_base-1]

 ACK(n)
 although, the receiver has previously acknowledged

 otherwise: ignore the packet

Selective repeat in Action

Go-back-N:
 sender can have up to N

unack’ed packets in pipeline
 receiver only sends cumulative

ack
 doesn’t ack packet if there’s

a gap
 sender has timer for oldest

unack’ed packet
 when timer expires,

retransmit all unack’ed
packets

Selective Repeat:
 sender can have up to N unack’ed

packets in pipeline
 receiver sends individual ack for each

packet
 sender maintains timer for each

unack’ed packet
 when timer expires, retransmit

only that unack’ed packet

Pipelined Protocols: Summary

TCP: Overview
RFCs: 793, 1122, 1323, 2018, 2581

 TCP is said to be connection-oriented
 before one application process can begin to send data to another
 the two processes must first “handshake” with each other

 send some preliminary segments to each other to establish
the parameters of the ensuing data transfer

 both sides of the connection will initialize many TCP state variables
associated with the TCP connection

TCP: Overview
RFCs: 793, 1122, 1323, 2018, 2581

 The TCP “connection” is not an end-to-end TDM or FDM
circuit as in a circuits switched network
 the connection state resides entirely in the two end systems

 because the TCP protocol runs only in the end systems and
not in the intermediate network elements (routers and link-
layer switches)

 the intermediate network elements do not maintain TCP
connection state

TCP: Overview
RFCs: 793, 1122, 1323, 2018, 2581

 A TCP connection provides a full-duplex service
 if there is a TCP connection between Process A on one host and

Process B on another host
 then application layer data can flow from Process A to Process B at

the same time as application layer data flows from Process B to
Process A

 A TCP connection is always point-to-point:
 one sender and one receiver

 multicasting
 the transfer of data from one sender to many receivers in a single

send operation
 not possible with TCP

TCP: How a TCP Connection is
Established

 suppose a process running in one host wants to initiate a
connection with another process in another host
 client process

 the process that is initiating the connection
 server process

 the other process
 three-way handshake
1. the client first sends a special TCP segment
2. the server responds with a second special TCP segment
3. the client responds again with a third special segment

 the first two segments carry no payload
 the third of these segments may carry a payload

TCP: How a TCP Connection is
Established

 Once a TCP connection is established, the two application
processes can send data to each other
 the client process passes a stream of data through the socket
 once the data passes through the door, the data is in the hands of

TCP running in the client
send buffer:
 set aside during initial 3-way handshake
 grab chunks of data from send buffer and

pass the data to the network layer
 maximum segment size (MSS): the

maximum amount of data that can be
grabbed and placed in a segment

 MSS is typically set by first
determining the length of the
largest link-layer frame that can
be sent by the sending host

client server

TCP: How a TCP Connection is
Established

 Once a TCP connection is established, the two application
processes can send data to each other
 the client process passes a stream of data through the socket
 once the data passes through the door, the data is in the hands of

TCP running in the client
segment:
 TCP pairs each chunk of client data with

a TCP header, thereby forming TCP
segments

client server

TCP: How a TCP Connection is
Established

 Once a TCP connection is established, the two application
processes can send data to each other
 the client process passes a stream of data through the socket
 once the data passes through the door, the data is in the hands of

TCP running in the client
receiver buffer:
 when TCP receives a segment at the

other end, the segment’s data is placed in
the TCP connection’s receive buffer

 app. reads the stream of data from buffer

client server

TCP: How a TCP Connection is
Established

 Once a TCP connection is established, the two application
processes can send data to each other
 the client process passes a stream of data through the socket
 once the data passes through the door, the data is in the hands of

TCP running in the client

 each side of the connection has its own
send buffer and its own receive buffer

TCP Segment Structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number

acknowledgement number
Receive window

Urg data pnterchecksum

FSRPAUhead
len

not
used

Options (variable length)

TCP segment: header fields and a data field

TCP Segment Structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number

acknowledgement number
Receive window

Urg data pnterchecksum

FSRPAUhead
len

not
used

Options (variable length)

TCP segment: header fields and a data field

32-bit sequence number
field

32-bit acknowledgment
number field

TCP Segment Structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number

acknowledgement number
Receive window

Urg data pnterchecksum

FSRPAUhead
len

not
used

Options (variable length)
flow control : # bytes
rcvr willing to accept

TCP segment: header fields and a data field

header length field: the
length of the TCP header in
32-bit words

used when a sender and
receiver negotiate the
maximum segment size
(MSS)

TCP Segment Structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number

acknowledgement number
Receive window

Urg data pnterchecksum

FSRPAUhead
len

not
used

Options (variable length)

URG: urgent data
(generally not used)

TCP segment: header fields and a data field

TCP Segment Structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number

acknowledgement number
Receive window

Urg data pnterchecksum

FSRPAUhead
len

not
used

Options (variable length)

ACK bit: indicate that
the value carried in the
acknowledgment field is
valid;

TCP segment: header fields and a data field

TCP Segment Structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number

acknowledgement number
Receive window

Urg data pnterchecksum

FSRPAUhead
len

not
used

Options (variable length)

PSH: push data now
(generally not used)

TCP segment: header fields and a data field

TCP Segment Structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number

acknowledgement number
Receive window

Urg data pnterchecksum

FSRPAUhead
len

not
used

Options (variable length)RST, SYN, FIN:
connection estab
(setup, teardown

commands)

TCP segment: header fields and a data field

TCP Segment Structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number

acknowledgement number
Receive window

Urg data pnterchecksum

FSRPAUhead
len

not
used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

TCP segment: header fields and a data field

	Transport Layer
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31

