
Transport Layer

Instructor: C. Pu (Ph.D., Assistant Professor)

Lecture 11

puc@marshall.edu

TCP Seq. #’s and ACKs (e.g., TELNET)

 two of the most important fields in the TCP segment header:
 sequence number field
 acknowledgment number field

 TCP views data as an unstructured, but ordered, stream of bytes
 sequence numbers are over the stream of transmitted bytes

 not over the series of transmitted segments
 thus, the sequence number for a segment is the byte-stream

number of the first byte in the segment.

TCP Seq. #’s and ACKs (e.g., TELNET)

 Seq. #:
 byte stream “number” of first byte in segment’s data

 not over the series of transmitted segments
 e.g. a file consisting of 500,000 bytes, and MSS (1,000 bytes)

 500 segments out of the data stream
 1st segment’s sequence # : 0
 2nd segment’s sequence # : 1,000
 3rd segment’s sequence # : 2,000, and so on

TCP Seq. #’s and ACKs (e.g., TELNET)

 Ack. #:
 sequence # of the next byte of data that the host is waiting for
 cumulative ACK:

 only ack bytes up to the first missing byte in the stream
 example:

 host A has received all bytes numbered 0 through 535 from B
and suppose that it is about to send a segment to host B

 host A is waiting for byte 536 and all the subsequent bytes in
host B’s data stream

 so host A puts 536 in the acknowledgment number field of the
segment it sends to B
 536 is the next byte of data the host A is waiting for

TCP Seq. #’s and ACKs (e.g., TELNET)

 Ack. #:
 sequence # of the next byte of data that the host is waiting for
 cumulative ACK:

 only ack bytes up to the first missing byte in the stream
 another example:

 host A has received one segment from host B containing bytes 0
through 535 and another segment containing bytes 900 through
1,000

 for some reason host A has not yet received bytes 536 through 899
 host A is still waiting for byte 536 (and beyond) in order to re-create

B’s data stream
 A’s next segment to B will contain 536 in the acknowledgment

number field
 because TCP only acknowledges bytes up to the first missing byte in

the stream,TCP is said to provide cumulative acknowledgments

TCP Seq. #’s and ACKs (e.g., TELNET)

 Telnet (RFC 854)
 application-layer protocol used for

remote login
 runs over TCP
 work between any pair of hosts
 Telnet is an interactive application

 nicely illustrates TCP
sequence and
acknowledgment numbers

Host A Host B

User
types
‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes

back ‘C’

time
simple telnet scenario

piggybacked

TCP Seq. #’s and ACKs (e.g., TELNET)

 Example:
 host A initiates a Telnet session

with host B
 host A: client
 host B: server
 each character typed by the user

will be sent to the remote host;
the remote host will send back a
copy of each character, which will
be displayed on the Telnet user’s
screen

 assuming that starting sequence
numbers are 42 and 79 for the
client and server.

Host A Host B

User
types
‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes

back ‘C’

time
simple telnet scenario

piggybacked

TCP Seq. #’s and ACKs (e.g., TELNET)

 Seq. #’s:
 byte stream “number” of first byte

in segment’s data

 ACKs:
 seq # of next byte expected from

other side
 cumulative ACK

Host A Host B

User
types
‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes

back ‘C’

time
simple telnet scenario

piggybacked

TCP Round Trip Time (RTT) and Timeout

 TCP uses timeout/retransmit mechanism to recover from lost segments
 Q: how to set TCP timeout value?

 longer than RTT
 the time from when a segment is sent until it is acked
 but RTT varies

 too short: premature timeout
 unnecessary retransmissions

 too long: slow reaction to segment loss

 Q: how to estimate RTT?
 SampleRTT: measured time from segment transmission until ACK receipt

 ignore retransmissions
 SampleRTT will vary, want estimated RTT “smoother”

 average several recent measurements, not just current SampleRTT

TCP Round Trip Time (RTT) and Timeout
(cont.)

 EstimatedRTT = (1- α) * EstimatedRTT + α * SampleRTT
 the new value of EstimatedRTT is a weighted combination of the

previous value of EstimatedRTT and the new value for SampleRTT
 typical value: α = 0.125

 Example RTT estimation:

TCP Round Trip Time (RTT) and Timeout
(cont.)

 In addition to having an estimate of the RTT, it is also valuable to have a
measure of the variability of the RTT

 RTT variation: DevRTT, as an estimate of how much SampleRTT
typically deviates from EstimatedRTT

 β is 0.25

DevRTT = (1 - β) * DevRTT + β * |SampleRTT - EstimatedRTT|

TCP Round Trip Time (RTT) and Timeout
(cont.)

 given values of EstimatedRTT and DevRTT, what value should be used
for TCP’s timeout interval?
 the interval should be greater than or equal to EstimatedRTT, or

unnecessary retransmissions would be sent
 but the timeout interval should not be too much larger than

EstimatedRTT

 desirable to set the timeout equal to the EstimatedRTT plus some
margin
 the margin should be large when there is a lot of fluctuation in the

SampleRTT values
 it should be small when there is little fluctuation
 the value of DevRTT should thus come into play here

 then set timeout interval:
 TimeoutInterval = EstimatedRTT + 4 * DevRTT

TCP Reliable Data Transfer

 TCP creates rdt service on top of IP’s unreliable service
 pipelined segments
 cumulative acks
 TCP uses single retransmission timer

 retransmissions are triggered by:
 timeout events
 duplicate acks

TCP Reliable Data Transfer

 suppose that data is being sent in only one direction, from Host A to
Host B, and that Host A is sending a large file
 first present a highly simplified description of a TCP sender that

uses only timeouts to recover from lost segments
 second present a more complete description that uses duplicate

acknowledgments in addition to timeouts

TCP Sender Events (cont.)

wait
for
event

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

L

create segment, seq. #: NextSeqNum
pass segment to IP (i.e., “send”)
NextSeqNum = NextSeqNum + length(data)
if (timer currently not running)

start timer

data received from application above

retransmit not-yet-acked segment
with smallest seq. #

start timer

timeout

if (y > SendBase) { /* SendBase is the oldest unacked byte */
SendBase = y
/* SendBase–1: last cumulatively ACKed byte */
if (there are currently not-yet-acked segments)

start timer
else stop timer

}

ACK received, with ACK field value y

TCP Sender Events

 data rcvd from app.:
 create segment with seq #
 seq # is byte-stream number of first data byte in segment
 start timer if not already running (think of timer as for oldest unacked

segment)
 expiration interval: TimeOutInterval

 timeout:
 retransmit segment that caused timeout
 restart timer

 Ack rcvd:
 if acknowledges previously unacked segments

 update what is known to be acked
 start timer if there are still unacked segments

TCP Sender
Events (cont.)

 comment:
 SendBase - 1: last

cumulatively ack’ed
byte

NextSeqNum = InitialSeqNum;
SendBase = InitialSeqNum;

loop (forever) {
switch(event) {

event: data received from application above
create TCP segment with sequence number NextSeqNum;
pass segment to IP;
NextSeqNum = NextSeqNum + length(data);
if (timer currently not running)

start timer;

event: timer timeout
retransmit not-yet-acknowledged segment with

smallest sequence number;
start timer;

event:ACK received, with ACK field value of y
if (y > SendBase) {

SendBase = y;
/* SendBase – 1: last cumulative ACKed byte */
if (there are currently not-yet-acknowledged segments)

start timer;
else

stop timer;
}

} /* end of switch */
} /* end of loop forever */

TCP: Retransmission Scenarios
Host A

loss

tim
eo

ut

lost ACK scenario

Host B

X

time

SendBase
= 100

discard retransmitted segment

timeout

TCP: Retransmission Scenarios
Host A

time
premature timeout

Host B

Se
q=

92
 ti

m
eo

ut
Se

q=
92

 ti
m

eo
ut

SendBase
= 120

SendBase
= 120

Sendbase
= 100

TCP: Retransmission Scenarios (cont.)

Host A

loss

tim
eo

ut

Cumulative ACK scenario

Host B

X

time

SendBase
= 120 Host A knows that Host B has received

everything up through byte 119!!

TCP: Retransmission Scenarios

 doubling the timeout interval
 each time TCP retransmission

 set the next timeout interval to twice
the previous value
 not derive the value from EstimatedRTT

and DevRTT

 e.g. 0.75, 1.5, 3.0, 6.0, etc
 related to congestion control

 whenever the timeout event occurs,
 retransmit the not-yet-ack segment with

the smallest sequence #
 whenever the timer is started (e.g. data

packet from application layer or ack received)
 timeout value is derived from the most

recent value (EstimatedRTT and DevRTT)

Host A

loss

tim
eo

ut

lost ACK scenario

Host B

X

time

SendBase
= 100

tim
eo

ut
*

	Transport Layer
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21

