
Transport Layer

Instructor: C. Pu (Ph.D., Assistant Professor)

Lecture 12

puc@marshall.edu

Fast Retransmit

 time-out period often relatively long:
 long delay before resending lost packet
 increase end-to-end delay

 detect lost segments via duplicate ACKs
 duplicate ACKs: ACK that reAcks a segment for which the sender

has already received an earlier Ack
 sender often sends many segments back-to-back
 if segment is lost, there will likely be many duplicate ACKs

 if sender receives 3 ACKs for the same data, it supposes that segment
after ACKed data was lost:
 fast retransmit: resend unacked segment with smallest seq # before

timeout
 likely that unacked segment lost, so don’t wait for timeout

Host A

tim
eo

ut

Host B

time

X

seq = 92, 8 bytes
seq = 100, 20 bytes
seq = 120, 15 bytes

seq = 135, 6 bytes
seq = 141, 16 bytes

ACK = 100

ACK = 100
ACK = 100
ACK = 100

triple
duplicate

ACKs

Fast Retransmit (cont.)

Cumulative ACK

Fast Retransmit (cont.)

event: ACK received, with ACK field value of y
if (y > SendBase) {

SendBase = y;
if (there are currently not-yet-acknowledged segments)

start timer;
}
else {

increment count of dup ACKs received for y;
if (count of dup ACKs received for y == 3) {

resend segment with sequence number y;
}

a duplicate ACK for
already ACKed segment

fast retransmit

TCP Flow Control

receiver controls sender, so sender
won’t overflow receiver’s buffer by

transmitting too much, too fast

flow control

application
process

TCP socket
receiver buffers

TCP
code

IP
code

application

OS

receiver protocol stack

… slower than TCP
receiver is delivering
(sender is sending)

from sender

application may
remove data from

TCP socket buffers ….

receiver

TCP Flow Control (cont.)

 receiver side of TCP connection has a receive buffer:

 app. process may be slow at reading from buffer
 speed-matching service: matching the send rate to the receiving app’s

drain rate

receiver controls sender, so sender
won’t overflow receiver’s buffer by

transmitting too much, too fast

flow control

TCP Flow Control (cont.)

 spare room in buffer
 LastByteRcvd – LastByteRead <= RcvBuffer
 RcvWindow (rwnd) = RcvBuffer -[LastByteRcvd -

LastByteRead]

 receiver advertises spare room by including value of rwnd in TCP header
receiver-to-sender segments
 RcvBuffer size set via socket options (typical default is 4096 bytes)

 sender limits amount of unACKed (“in-flight”) data to receiver’s rwnd value
 guarantees receive buffer will not overflow
 LastByteSent – LastByteAcked <= rwnd

dynamic

TCP Flow Control (cont.)

 what if,
 Host B’s receive buffer is 0 (rwnd = 0)
 Host B has nothing to send to A

 Host A is never informed about rwnd
 Host A is blocked and can transmit no more data!! How to solve?

 Host A continues to send segments with one data byte, when B’s
receive window is zero

TCP Connection Management

 recall:
 TCP sender and receiver establish “connection” before exchanging

data segments
 agree to establish connection and agree on connection parameters

 initialize TCP variables:
 seq. #s
 buffers
 flow control info (e.g. rwnd)

TCP Connection Management

 how a TCP connection is established
 suppose a process running in one host (client) wants to initiate a

connection with another process in another host (server)
 the client application process first informs the client TCP that it wants to

establish a connection to a process in the server
 the TCP in the client then proceeds to establish a TCP connection with

the TCP in the server in the following manner:
1. the client-side TCP first sends a special TCP segment to the server-

side TCP
 this special segment contains no application-layer data
 the SYN bit, is set to 1 (SYN segment)
 the client randomly chooses an initial sequence number

(client_isn) and puts this number in the sequence number field of
the initial TCP SYN segment

TCP Connection Management

 how a TCP connection is established
2. once the first segment arrives at the server host

 extracts the TCP SYN segment from the datagram
 allocates the TCP buffers and variables to the connection
 sends a connection-granted segment to the client TCP
 no application data
 SYN bit is set to 1
 the acknowledgment field of the TCP segment header is set to

client_isn + 1
 the server chooses its own initial sequence number (server_isn)

and puts this value in the sequence number field of the TCP
segment header

 the connection-granted segment is called SYNACK segment

TCP Connection Management

 how a TCP connection is established
3. once the SYNACK segment arrives at the client host

 the client also allocates buffers and variables to the connection
 the client host then sends the server yet another segment

 this last segment acknowledges the server’s connection-
granted segment (putting the value server_isn + 1 in the
acknowledgment field of the TCP segment header)

 the SYN bit is set to zero, since the connection is established
 this third stage of the three-way handshake may carry client-to-

server data in the segment payload

TCP Connection Management

 how a TCP connection is established
 once these three steps have been completed, the client and server hosts

can send segments containing data to each other
 in each of these future segments, the SYN bit will be set to zero
 note that in order to establish the connection, three packets are sent

between the two hosts
 three-way handshake

TCP 3-Way Handshake

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x)
indicates server is live;

send ACK for SYNACK;
this segment may contain

client-to-server data
received ACK(y)
indicates client is live

SYNSENT

ESTAB

SYN RCVD

client state

LISTEN

server state

LISTEN

TCP Connection Management

 how a TCP connection is torn down
 either of the two processes participating in a TCP connection can end the

connection
 when a connection ends, the “resources” (that is, the buffers and variables)

in the hosts are deallocated
 suppose the client decides to close the connection

 the client TCP to send a special TCP segment to the server process
 this special segment has a flag bit in the segment’s header, the FIN

bit, set to 1
 when the server receives this segment, it sends the client an

acknowledgment segment in return
 the server then sends its own shutdown segment, which has the FIN

bit set to 1
 finally, the client acknowledges the server’s shutdown segment
 at this point, all the resources in the two hosts are now deallocated

TCP: Closing a Connection (cont.)

FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1
wait for server

close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

timed wait
for 2*max

segment lifetime

CLOSED

FIN_WAIT_1 FINbit=1, seq=xcan no longer
send but can
receive data

clientSocket.close()

client state server state

ESTABESTAB

	Transport Layer
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16

