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 Algorithm
 a sequence of unambiguous instructions for solving a problem
 e.g., obtaining a required output for any valid input in a finite

amount of time.

“computer” 

problem

algorithm

input output

What is an Algorithm?

the nonambiguity requirement 
cannot be compromised

the valid input has to be 
specified carefully

the same algorithm can 
be represented in different way

there may exist several 
algorithms for same problem
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 Theoretical importance
 the core of computer science

 Practical importance
 a practitioner’s toolkit of known algorithms
 framework for designing and analyzing algorithms for new 

problems
 algorithm design techniques     problem solving strategies

Why Study Algorithms?


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 Algorithm design techniques
 a general approach to solving 

problems algorithmically
 applicable to a variety of 

problems from different areas

 guidance for designing algorithms 
for new problems

Two Main Issues Related to Algorithms

 How to analyze algorithm 
efficiency?
 How good is the algorithm?

 time efficiency
 space efficiency

 Does there exist a better 
algorithm?
 lower bounds
 optimality
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 sorting
 searching
 string processing
 graph problems
 numerical problems
 etc.

Important Problem Types



 Data structure:  a particular scheme of 
organizing related data items

 Linear data structures: 
 array 
 linked list

 a sequence of 0 or more elements (called 
nodes)

 node: 
 data
 link to another node

Fundamental Data Structures

data link



 Data structure:  a particular scheme of 
organizing related data items

 Linear data structures: 
 two special lists

 stack
 operations (insert and delete) can be 

done only at the end (called top)
 last-in-first-out fashion

 queue
 deletion at one end (called front)
 insertion at the other end (called rear)
 first-in-first-out fashion

Fundamental Data Structures
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 Suppose we have two algorithms, how can we tell which one is 
better?
 could implement both algorithms, run them both

 expensive and error prone…

 preferably, analyze them mathematically
 algorithm analysis

 Algorithms Data Structures
 data structures are implemented 

using algorithms

Algorithm vs. Data Structure
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 The same problem can be solved by multiple algorithms 
 but, differ in efficiency

 for small amount of data, differences are not significant
 differences grow with the amount of data

 Compare the efficiency of algorithms      computational complexity
 Computational complexity indicates

 how much effort needed to apply the algorithm, or
 how costly it is 

 cost is interpreted in different ways
 depending on the context 

Computational and Asymptotic 
Complexity 


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 Two efficiency criteria
 time, the amount of time an algorithm takes in terms of the amount 

of input
 space, the amount of memory (space) an algorithm takes in terms of 

the amount of input
 the factor of time is usually more important than that of space

 running time is system-dependent and language-dependent

 Algorithm’s asymptotic complexity
 when n (number of input items) goes to infinity, what happens to 

the algorithm’s performance?

Computational and Asymptotic 
Complexity 
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 When evaluating algorithm’s efficiency, we DO NOT use real-time 
units (e.g., microseconds, …)

 Logical units 
 expressing a relationship between the size n of input and the amount 

of time t required to process the input
 e.g., 

 suppose a linear relationship between the size n and the time t

 an increase of input by a factor of 5      the increase of time 
by the same factor 

Computational and Asymptotic 
Complexity 

t = cn


n2 = 5n1  t2 = 5t1
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 The relationship function between n and t is usually complex
 discard the terms that do not substantially change function’s 

magnitude 
 the resulting function provides an approximate measure of efficiency

 sufficiently close to the original, especially with large quantities 
of data

 Asymptotic complexity
 used when

 discarding certain terms to express the efficiency 
 approximations are acceptable 

Computational and Asymptotic 
Complexity 
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 e.g., f(n) = n2 + 100n + log10n + 1000
 As the value of n increases, only the n2 term is significant

Computational and Asymptotic 
Complexity (cont.) 

quadratic growth
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 The most commonly used notation for asymptotic complexity 
 estimate the rate of function growth
 e.g., n2 + 100n + log10n + 1000 = O(n2) 

 Definition: 
 Let f(n) and g(n) be positive-valued functions, where n is a positive 

integer. 
 We write f(n) = O(g(n)) if and only if there exists a real 

number c and positive integer N satisfying 0 < f(n) < cg(n) for 
all n > N. 

 Examples:
 f(n) = 3n + 2

Big-O Notation

big-O notation
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 Consider the two functions
 f(n) = n2 and g(n) = n2 – 3n + 2
 Around n = 0, they look very different

Quadratic Growth
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 Yet on the range n = [0, 1000], they are (relatively) indistinguishable:

Quadratic Growth (cont.)
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 To demonstrate with another example,
 f(n) = n6 and    g(n) = n6 – 23n5+193n4 –729n3+1206n2 – 648n
 Around n = 0, they are very different

Polynomial Growth
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 Still, around n = 1000, the relative difference is less than 3%

Polynomial Growth (cont.)
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 While c and N exist, 
 how to calculate them? or what to do if multiple candidates exist? 

 e.g., the function f:
f (n) = 2n2 + 3n + 1

and g:
g(n) = n2

 Clearly f (n) is O(n2); possible candidates for c and N

Big-O Notation (cont.)
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 Solving the inequality from the definition of big-O:
f(n) < cg(n)

 Substituting for f(n) and g(n), 

or

 Since n > N, and N is a positive integer, start with N = 1 and 
substitute in either expression to obtain c

Big-O Notation (cont.)
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f (n) = 2n2 + 3n + 1
 Generally, choose an N that allows one term of f to dominate

the expression
 only two terms to consider: 2n2 and 3n, since the last term is a 

constant
 as long as n is greater than 1.5, 2n2 dominates the expression
 N must be 2 or more, and c is greater than 3.75 

 The choice of c depends on the choice of N and vice-versa

Big-O Notation (cont.)
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 Different values of c and N:

Big-O Notation (cont.)
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 Classes of algorithms and their execution times
 Use a computer executing 1 million operations per second 

Examples of Complexities
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 The class of an algorithm based on big-O notation 
 a convenient way to describe its behavior

 e.g., a linear function is O(n); 
 its time increases in direct proportion to the amount of data processed

Examples of Complexities (cont.)
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 Relationships expressed graphically: 

 With today’s supercomputers..
 cubic order algorithms or higher are impractical for large numbers 

of elements

Examples of Complexities (cont.)
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 Asymptotic bounds 
 used to determine the time and space efficiency of algorithms
 generally, we are interested in time complexity!!

 Consider a simple loop:
for (i = sum = 0; i < n; i++)

sum = sum + a[i]

 in initialization, execute two assignments once
 sum = 0 and i = sum

 in the loop, iterates n times
 update sum (sum = sum + a[i]) and increment i (e.g., i++) 

 2 + 2n assignments  O(n)   /* asymptotic complexity */

Finding Asymptotic Complexity
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 A nested loop case, 
 the complexity grows by a factor of n, although this isn’t always 

the case

 Consider, 
for (i = 0; i < n; i++) {

for (j = 1, sum = a[0]; j <= i; j++)

sum += a[j];

cout << ”sum for subarray 0 through “ << i

<<” is “<<sum<<end1;

}

Finding Asymptotic Complexity 
(cont.)
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 In the outer loop, initialize i; execute n times
 increment i, and execute the inner loop and cout statement

 In the inner loop, initialize j and sum each time, 
 the number of assignments so far, 1 + 3n
 execute i times, where i ranges from 1 to n – 1
 each time the inner loop executes, increment j and update sum
 the inner loop executes 

assignments
 The total number of assignments, 1 + 3n + n(n – 1)  O(n2)

Finding Asymptotic Complexity 
(cont.)

for (i = 0; i < n; i++) {

for (j = 1, sum = a[0]; j <= i; j++)

sum += a[j];

cout << ”sum for subarray 0 through “ << i

<< ” is “ << sum << end1;

}
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