Complexity Analysis

Lecture 02

Instructor: Dr. Cong Pu, Ph.D.

cong.pu@okstate.edu

Adapted partially from Data Structures and Algorithms in Java, M. T. Goodrich, R. Tamassia and M. H. Goldwasser, Sixth Edition, Wiley; Data Structures and Algorithms in C++, Adam Drozdek, 4th Edition, Cengage Learning

What is an Algorithm?

- *Algorithm*
	- a sequence of unambiguous instructions for solving a problem
	- **e.g., obtaining a required output for any valid input in a finite** amount of time.

Why Study Algorithms?

- Theoretical importance
	- **the core of computer science**

- **Practical importance**
	- a practitioner's toolkit of known algorithms
	- **Fig.** framework for designing and analyzing algorithms for new problems
	- algorithm design techniques \rightarrow problem solving strategies

Two Main Issues Related to Algorithms

- *Algorithm design techniques*
	- a general approach to solving problems algorithmically
		- **a** applicable to a variety of problems from different areas
	- guidance for designing algorithms for new problems

- How to **analyze algorithm efficiency**?
	- How good is the algorithm?
		- **time efficiency**
		- **space efficiency**
	- Does there exist a better algorithm?
		- lower bounds
		- **p** optimality

Important Problem Types

- sorting
- **searching**
- **string processing**
- **graph problems**
- **numerical problems**
- etc.

Fundamental Data Structures

- *Data structure*: a particular scheme of organizing related data items
- **Linear data structures:**
	- array

- **I** linked list
	- a sequence of 0 or more elements (called nodes)
	- node:
		- data
		- **If link to another node**

Fundamental Data Structures

- *Data structure*: a particular scheme of organizing related data items
- Linear data structures:
	- **two special lists**
		- B stack

Empty

stack

Push

last-in-first-out fashion

- **queue**
	- deletion at one end (called *front*)
	- insertion at the other end (called *rear*)
	- first-in-first-out fashion

Algorithm vs. Data Structure

- Suppose we have two algorithms, how can we tell which one is better?
	- could implement both algorithms, run them both
		- **EXPENSIVE and error prone...**
	- **PEDETER 19 referably, analyze them mathematically**
		- *algorithm analysis*
- **Algorithms** \leftarrow \rightarrow Data Structures
	- **data structures are implemented** using algorithms

- The same problem can be solved by multiple algorithms
	- **but, differ in efficiency**
		- **for small amount of data, differences are not significant**
		- **differences grow with the amount of data**
- **Compare the efficiency of algorithms** \rightarrow **computational complexity**
- *Computational complexity* indicates
	- how much effort needed to apply the algorithm, or
	- **n** how costly it is
		- cost is interpreted in different ways
		- **depending on the context**

- *Two efficiency criteria*
	- **time**, the amount of **time** an algorithm takes in terms of the amount of input
	- **space**, the amount of **memory (space)** an algorithm takes in terms of the amount of input
	- the factor of time is usually more important than that of space
		- *running time is system-dependent and language-dependent*
- Algorithm's *asymptotic* **complexity**
	- **n** when *n* **(number of input items)** goes to infinity, what happens to the algorithm's performance?

- When evaluating algorithm's efficiency, we DO NOT use real-time units (e.g., microseconds, …)
- *Logical units*
	- expressing a *relationship* between the size *n* of input and the amount of time *t* required to process the input
	- $e.g.,$
		- suppose a linear relationship between the size *n* and the time *t*

 $t = cn$

an increase of input by a factor of $5 \rightarrow \infty$ the increase of time by the same factor

$$
n_2 = 5n_1 \rightarrow t_2 = 5t_1
$$

- The relationship function between *n* and *t* is usually complex
	- discard the terms that do not substantially change function's magnitude
	- **the resulting function provides an approximate measure of efficiency**
		- sufficiently *close* to the original, especially with large quantities of data
- *Asymptotic* **complexity**
	- used when
		- **discarding certain terms to express the efficiency**
		- **approximations are acceptable**

- $e.g., f(n) = n^2 + 100n + log_{10}n + 1000$
- As the value of *n* increases, only the *n*² term is significant

quadratic growth

- The most commonly used notation for asymptotic complexity
	- **Exercise is standard extermaller** estimate the rate of function growth
	- **e**.g., n^2 + 100*n* + $log_{10}n$ + 1000 = $O(n^2)$

big-O notation

Definition:

- Let *f*(*n*) and *g*(*n*) be positive-valued functions, where *n* is a positive integer.
- We write $f(n) = O(g(n))$ if and only if there exists a real number *c* and positive integer *N* satisfying **0 <** *f***(***n***) <** *cg***(***n***)** for all $n > N$.
- **Examples:**
	- *f(n)* = $3n + 2$

Quadratic Growth

- **Consider the two functions**
	- **f**(*n*) = n^2 and $g(n) = n^2 3n + 2$
	- Around $n = 0$, they look very different

Quadratic Growth (cont.)

Yet on the range $n = [0, 1000]$, they are (relatively) indistinguishable:

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Polynomial Growth

- To demonstrate with another example,
	- **f** $f(n) = n^6$ and $g(n) = n^6 23n^5 + 193n^4 729n^3 + 1206n^2 648n$
	- Around $n = 0$, they are very different

Polynomial Growth (cont.)

Still, around $n = 1000$, the relative difference is less than 3%

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

- While *c* and *N* exist,
	- **how to calculate them? or what to do if multiple candidates exist?**
- e.g., the function *f*:

$$
f(n)=2n^2+3n+1
$$

and *g*:

 $g(n) = n^2$

Clearly *f* (*n*) is *O*(*n*2); **possible candidates** for *c* and *N*

- Solving the inequality from the definition of big-O: $f(n) \leq cg(n)$
- Substituting for $f(n)$ and $g(n)$,

$$
2n^2 + 3n + 1 \le cn^2
$$
 or $2 + \frac{3}{n} + \frac{1}{n^2} \le c$

Since $n \geq N$, and N is a positive integer, start with $N = I$ and substitute in either expression to obtain *c*

 $f(n) = 2n^2 + 3n + 1$

- Generally, choose an *N* that allows **one term of** *f* to **dominate** the expression
	- only two terms to consider: **2***n***² and 3***n*, since the last term is a constant
	- as long as *n* is greater than 1.5, **2***n***²** dominates the expression
	- **N** must be 2 or more, and *c* is greater than 3.75
- The choice of *c* depends on the choice of N and vice-versa

Different values of c and N:

Examples of Complexities

- **Classes of algorithms and their execution times**
	- **Use a computer executing I million operations per second**

C

Examples of Complexities (cont.)

- The *class* of an algorithm based on big-O notation
	- **a** a convenient way to describe its behavior
- e.g., a **linear function** is *O*(*n*);
	- **EXTER** its time increases in direct proportion to the amount of data processed

Examples of Complexities (cont.)

Relationships expressed graphically:

- **With today's supercomputers..**
	- **EX Cubic order algorithms or higher are impractical for large numbers** of elements

Finding Asymptotic Complexity

- Asymptotic bounds
	- used to determine the time and space efficiency of algorithms
	- generally, we are interested in **time complexity**!!
- **Consider a simple loop:**

```
for (i = sum = 0; i < n; i++)sum = sum + a[i]
```
in initialization, execute two assignments *once*

 $sum = 0$ and $i = sum$

in the loop, iterates *n times*

update sum (sum = sum + a[i]) and <u>increment</u> i (e.g., i++)

2 + 2n assignments \rightarrow O(n) /* asymptotic complexity */

Finding Asymptotic Complexity (cont.)

- A nested loop case,
	- the complexity grows by a factor of *n*, although this isn't always the case
- **Consider,**

```
for (i = 0; i < n; i++) {
   for (j = 1, sum = a[0]; j \le i \le j++)sum += a[j];cout << "sum for subarray 0 through " << i
       <<" is "<<sum<<end1;
}
```


Finding Asymptotic Complexity (cont.)

```
for (i = 0; i < n; i++) {
       for (j = 1, sum = a[0]; j \le i; j++)sum += a[i];cout << "sum for subarray 0 through " << i
             << " is " << sum << endl;
```
IF IN THE SAMA IN THE SAMA IN THE INCOCO IS A THE INCOCO IN THE INCOCO IS A THE INCOCO IN THE INCOCO I }

- \blacksquare increment i, and execute the inner loop and cout statement
- In the inner loop, initialize $\mathbf i$ and sum each time,
	- **the number of assignments so far,** $1 + 3n$
	- execute i times, where i ranges from \vert to $n \vert$
	- each time the inner loop executes, increment j and update sum
	- the inner loop executes $\sum_{i=1}^{n-1} 2i = 2(1 + 2 + \cdots + n 1) = n(n 1)$ assignments
- The total number of assignments, $1 + 3n + n(n 1) \rightarrow O(n^2)$

