
CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Complexity Analysis

Lecture 02

Instructor: Dr. Cong Pu, Ph.D.

cong.pu@okstate.edu

Adapted partially from Data Structures and Algorithms in Java, M. T. Goodrich, R. Tamassia and M. H.
Goldwasser, Sixth Edition, Wiley; Data Structures and Algorithms in C++, Adam Drozdek, 4th Edition,

Cengage Learning

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Algorithm
 a sequence of unambiguous instructions for solving a problem
 e.g., obtaining a required output for any valid input in a finite

amount of time.

“computer”

problem

algorithm

input output

What is an Algorithm?

the nonambiguity requirement
cannot be compromised

the valid input has to be
specified carefully

the same algorithm can
be represented in different way

there may exist several
algorithms for same problem

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Theoretical importance
 the core of computer science

 Practical importance
 a practitioner’s toolkit of known algorithms
 framework for designing and analyzing algorithms for new

problems
 algorithm design techniques problem solving strategies

Why Study Algorithms?

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Algorithm design techniques
 a general approach to solving

problems algorithmically
 applicable to a variety of

problems from different areas

 guidance for designing algorithms
for new problems

Two Main Issues Related to Algorithms

 How to analyze algorithm
efficiency?
 How good is the algorithm?

 time efficiency
 space efficiency

 Does there exist a better
algorithm?
 lower bounds
 optimality

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 sorting
 searching
 string processing
 graph problems
 numerical problems
 etc.

Important Problem Types

 Data structure: a particular scheme of
organizing related data items

 Linear data structures:
 array
 linked list

 a sequence of 0 or more elements (called
nodes)

 node:
 data
 link to another node

Fundamental Data Structures

data link

 Data structure: a particular scheme of
organizing related data items

 Linear data structures:
 two special lists

 stack
 operations (insert and delete) can be

done only at the end (called top)
 last-in-first-out fashion

 queue
 deletion at one end (called front)
 insertion at the other end (called rear)
 first-in-first-out fashion

Fundamental Data Structures

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Suppose we have two algorithms, how can we tell which one is
better?
 could implement both algorithms, run them both

 expensive and error prone…

 preferably, analyze them mathematically
 algorithm analysis

 Algorithms Data Structures
 data structures are implemented

using algorithms

Algorithm vs. Data Structure

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 The same problem can be solved by multiple algorithms
 but, differ in efficiency

 for small amount of data, differences are not significant
 differences grow with the amount of data

 Compare the efficiency of algorithms computational complexity
 Computational complexity indicates

 how much effort needed to apply the algorithm, or
 how costly it is

 cost is interpreted in different ways
 depending on the context

Computational and Asymptotic
Complexity

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Two efficiency criteria
 time, the amount of time an algorithm takes in terms of the amount

of input
 space, the amount of memory (space) an algorithm takes in terms of

the amount of input
 the factor of time is usually more important than that of space

 running time is system-dependent and language-dependent

 Algorithm’s asymptotic complexity
 when n (number of input items) goes to infinity, what happens to

the algorithm’s performance?

Computational and Asymptotic
Complexity

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 When evaluating algorithm’s efficiency, we DO NOT use real-time
units (e.g., microseconds, …)

 Logical units
 expressing a relationship between the size n of input and the amount

of time t required to process the input
 e.g.,

 suppose a linear relationship between the size n and the time t

 an increase of input by a factor of 5 the increase of time
by the same factor

Computational and Asymptotic
Complexity

t = cn

n2 = 5n1 t2 = 5t1

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 The relationship function between n and t is usually complex
 discard the terms that do not substantially change function’s

magnitude
 the resulting function provides an approximate measure of efficiency

 sufficiently close to the original, especially with large quantities
of data

 Asymptotic complexity
 used when

 discarding certain terms to express the efficiency
 approximations are acceptable

Computational and Asymptotic
Complexity

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 e.g., f(n) = n2 + 100n + log10n + 1000
 As the value of n increases, only the n2 term is significant

Computational and Asymptotic
Complexity (cont.)

quadratic growth

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 The most commonly used notation for asymptotic complexity
 estimate the rate of function growth
 e.g., n2 + 100n + log10n + 1000 = O(n2)

 Definition:
 Let f(n) and g(n) be positive-valued functions, where n is a positive

integer.
 We write f(n) = O(g(n)) if and only if there exists a real

number c and positive integer N satisfying 0 < f(n) < cg(n) for
all n > N.

 Examples:
 f(n) = 3n + 2

Big-O Notation

big-O notation

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Consider the two functions
 f(n) = n2 and g(n) = n2 – 3n + 2
 Around n = 0, they look very different

Quadratic Growth

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Yet on the range n = [0, 1000], they are (relatively) indistinguishable:

Quadratic Growth (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 To demonstrate with another example,
 f(n) = n6 and g(n) = n6 – 23n5+193n4 –729n3+1206n2 – 648n
 Around n = 0, they are very different

Polynomial Growth

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Still, around n = 1000, the relative difference is less than 3%

Polynomial Growth (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 While c and N exist,
 how to calculate them? or what to do if multiple candidates exist?

 e.g., the function f:
f (n) = 2n2 + 3n + 1

and g:
g(n) = n2

 Clearly f (n) is O(n2); possible candidates for c and N

Big-O Notation (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Solving the inequality from the definition of big-O:
f(n) < cg(n)

 Substituting for f(n) and g(n),

or

 Since n > N, and N is a positive integer, start with N = 1 and
substitute in either expression to obtain c

Big-O Notation (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

f (n) = 2n2 + 3n + 1
 Generally, choose an N that allows one term of f to dominate

the expression
 only two terms to consider: 2n2 and 3n, since the last term is a

constant
 as long as n is greater than 1.5, 2n2 dominates the expression
 N must be 2 or more, and c is greater than 3.75

 The choice of c depends on the choice of N and vice-versa

Big-O Notation (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Different values of c and N:

Big-O Notation (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Classes of algorithms and their execution times
 Use a computer executing 1 million operations per second

Examples of Complexities

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 The class of an algorithm based on big-O notation
 a convenient way to describe its behavior

 e.g., a linear function is O(n);
 its time increases in direct proportion to the amount of data processed

Examples of Complexities (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Relationships expressed graphically:

 With today’s supercomputers..
 cubic order algorithms or higher are impractical for large numbers

of elements

Examples of Complexities (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Asymptotic bounds
 used to determine the time and space efficiency of algorithms
 generally, we are interested in time complexity!!

 Consider a simple loop:
for (i = sum = 0; i < n; i++)

sum = sum + a[i]

 in initialization, execute two assignments once
 sum = 0 and i = sum

 in the loop, iterates n times
 update sum (sum = sum + a[i]) and increment i (e.g., i++)

 2 + 2n assignments O(n) /* asymptotic complexity */

Finding Asymptotic Complexity

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 A nested loop case,
 the complexity grows by a factor of n, although this isn’t always

the case

 Consider,
for (i = 0; i < n; i++) {

for (j = 1, sum = a[0]; j <= i; j++)

sum += a[j];

cout << ”sum for subarray 0 through “ << i

<<” is “<<sum<<end1;

}

Finding Asymptotic Complexity
(cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 In the outer loop, initialize i; execute n times
 increment i, and execute the inner loop and cout statement

 In the inner loop, initialize j and sum each time,
 the number of assignments so far, 1 + 3n
 execute i times, where i ranges from 1 to n – 1
 each time the inner loop executes, increment j and update sum
 the inner loop executes

assignments
 The total number of assignments, 1 + 3n + n(n – 1) O(n2)

Finding Asymptotic Complexity
(cont.)

for (i = 0; i < n; i++) {

for (j = 1, sum = a[0]; j <= i; j++)

sum += a[j];

cout << ”sum for subarray 0 through “ << i

<< ” is “ << sum << end1;

}

	Complexity Analysis
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28

