
CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Complexity Analysis

Lecture 02

Instructor: Dr. Cong Pu, Ph.D.

cong.pu@okstate.edu

Adapted partially from Data Structures and Algorithms in Java, M. T. Goodrich, R. Tamassia and M. H.
Goldwasser, Sixth Edition, Wiley; Data Structures and Algorithms in C++, Adam Drozdek, 4th Edition,

Cengage Learning

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Algorithm
 a sequence of unambiguous instructions for solving a problem
 e.g., obtaining a required output for any valid input in a finite

amount of time.

“computer”

problem

algorithm

input output

What is an Algorithm?

the nonambiguity requirement
cannot be compromised

the valid input has to be
specified carefully

the same algorithm can
be represented in different way

there may exist several
algorithms for same problem

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Theoretical importance
 the core of computer science

 Practical importance
 a practitioner’s toolkit of known algorithms
 framework for designing and analyzing algorithms for new

problems
 algorithm design techniques problem solving strategies

Why Study Algorithms?



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Algorithm design techniques
 a general approach to solving

problems algorithmically
 applicable to a variety of

problems from different areas

 guidance for designing algorithms
for new problems

Two Main Issues Related to Algorithms

 How to analyze algorithm
efficiency?
 How good is the algorithm?

 time efficiency
 space efficiency

 Does there exist a better
algorithm?
 lower bounds
 optimality

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 sorting
 searching
 string processing
 graph problems
 numerical problems
 etc.

Important Problem Types

 Data structure: a particular scheme of
organizing related data items

 Linear data structures:
 array
 linked list

 a sequence of 0 or more elements (called
nodes)

 node:
 data
 link to another node

Fundamental Data Structures

data link

 Data structure: a particular scheme of
organizing related data items

 Linear data structures:
 two special lists

 stack
 operations (insert and delete) can be

done only at the end (called top)
 last-in-first-out fashion

 queue
 deletion at one end (called front)
 insertion at the other end (called rear)
 first-in-first-out fashion

Fundamental Data Structures

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Suppose we have two algorithms, how can we tell which one is
better?
 could implement both algorithms, run them both

 expensive and error prone…

 preferably, analyze them mathematically
 algorithm analysis

 Algorithms Data Structures
 data structures are implemented

using algorithms

Algorithm vs. Data Structure

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 The same problem can be solved by multiple algorithms
 but, differ in efficiency

 for small amount of data, differences are not significant
 differences grow with the amount of data

 Compare the efficiency of algorithms computational complexity
 Computational complexity indicates

 how much effort needed to apply the algorithm, or
 how costly it is

 cost is interpreted in different ways
 depending on the context

Computational and Asymptotic
Complexity



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Two efficiency criteria
 time, the amount of time an algorithm takes in terms of the amount

of input
 space, the amount of memory (space) an algorithm takes in terms of

the amount of input
 the factor of time is usually more important than that of space

 running time is system-dependent and language-dependent

 Algorithm’s asymptotic complexity
 when n (number of input items) goes to infinity, what happens to

the algorithm’s performance?

Computational and Asymptotic
Complexity

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 When evaluating algorithm’s efficiency, we DO NOT use real-time
units (e.g., microseconds, …)

 Logical units
 expressing a relationship between the size n of input and the amount

of time t required to process the input
 e.g.,

 suppose a linear relationship between the size n and the time t

 an increase of input by a factor of 5 the increase of time
by the same factor

Computational and Asymptotic
Complexity

t = cn


n2 = 5n1  t2 = 5t1

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 The relationship function between n and t is usually complex
 discard the terms that do not substantially change function’s

magnitude
 the resulting function provides an approximate measure of efficiency

 sufficiently close to the original, especially with large quantities
of data

 Asymptotic complexity
 used when

 discarding certain terms to express the efficiency
 approximations are acceptable

Computational and Asymptotic
Complexity

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 e.g., f(n) = n2 + 100n + log10n + 1000
 As the value of n increases, only the n2 term is significant

Computational and Asymptotic
Complexity (cont.)

quadratic growth

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 The most commonly used notation for asymptotic complexity
 estimate the rate of function growth
 e.g., n2 + 100n + log10n + 1000 = O(n2)

 Definition:
 Let f(n) and g(n) be positive-valued functions, where n is a positive

integer.
 We write f(n) = O(g(n)) if and only if there exists a real

number c and positive integer N satisfying 0 < f(n) < cg(n) for
all n > N.

 Examples:
 f(n) = 3n + 2

Big-O Notation

big-O notation

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Consider the two functions
 f(n) = n2 and g(n) = n2 – 3n + 2
 Around n = 0, they look very different

Quadratic Growth

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Yet on the range n = [0, 1000], they are (relatively) indistinguishable:

Quadratic Growth (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 To demonstrate with another example,
 f(n) = n6 and g(n) = n6 – 23n5+193n4 –729n3+1206n2 – 648n
 Around n = 0, they are very different

Polynomial Growth

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Still, around n = 1000, the relative difference is less than 3%

Polynomial Growth (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 While c and N exist,
 how to calculate them? or what to do if multiple candidates exist?

 e.g., the function f:
f (n) = 2n2 + 3n + 1

and g:
g(n) = n2

 Clearly f (n) is O(n2); possible candidates for c and N

Big-O Notation (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Solving the inequality from the definition of big-O:
f(n) < cg(n)

 Substituting for f(n) and g(n),

or

 Since n > N, and N is a positive integer, start with N = 1 and
substitute in either expression to obtain c

Big-O Notation (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

f (n) = 2n2 + 3n + 1
 Generally, choose an N that allows one term of f to dominate

the expression
 only two terms to consider: 2n2 and 3n, since the last term is a

constant
 as long as n is greater than 1.5, 2n2 dominates the expression
 N must be 2 or more, and c is greater than 3.75

 The choice of c depends on the choice of N and vice-versa

Big-O Notation (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Different values of c and N:

Big-O Notation (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Classes of algorithms and their execution times
 Use a computer executing 1 million operations per second

Examples of Complexities

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 The class of an algorithm based on big-O notation
 a convenient way to describe its behavior

 e.g., a linear function is O(n);
 its time increases in direct proportion to the amount of data processed

Examples of Complexities (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Relationships expressed graphically:

 With today’s supercomputers..
 cubic order algorithms or higher are impractical for large numbers

of elements

Examples of Complexities (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Asymptotic bounds
 used to determine the time and space efficiency of algorithms
 generally, we are interested in time complexity!!

 Consider a simple loop:
for (i = sum = 0; i < n; i++)

sum = sum + a[i]

 in initialization, execute two assignments once
 sum = 0 and i = sum

 in the loop, iterates n times
 update sum (sum = sum + a[i]) and increment i (e.g., i++)

 2 + 2n assignments  O(n) /* asymptotic complexity */

Finding Asymptotic Complexity

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 A nested loop case,
 the complexity grows by a factor of n, although this isn’t always

the case

 Consider,
for (i = 0; i < n; i++) {

for (j = 1, sum = a[0]; j <= i; j++)

sum += a[j];

cout << ”sum for subarray 0 through “ << i

<<” is “<<sum<<end1;

}

Finding Asymptotic Complexity
(cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 In the outer loop, initialize i; execute n times
 increment i, and execute the inner loop and cout statement

 In the inner loop, initialize j and sum each time,
 the number of assignments so far, 1 + 3n
 execute i times, where i ranges from 1 to n – 1
 each time the inner loop executes, increment j and update sum
 the inner loop executes

assignments
 The total number of assignments, 1 + 3n + n(n – 1)  O(n2)

Finding Asymptotic Complexity
(cont.)

for (i = 0; i < n; i++) {

for (j = 1, sum = a[0]; j <= i; j++)

sum += a[j];

cout << ”sum for subarray 0 through “ << i

<< ” is “ << sum << end1;

}

	Complexity Analysis
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28

