
CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Linked Lists

Lecture 03

Instructor: Dr. Cong Pu, Ph.D.

cong.pu@okstate.edu

Adapted partially from Data Structures and Algorithms in Java, M. T. Goodrich, R. Tamassia and M. H.
Goldwasser, Sixth Edition, Wiley; Data Structures and Algorithms in C++, Adam Drozdek, 4th Edition,

Cengage Learning

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Limitations of arrays,
 the size of the array must be known at the time the code is

compiled
 the elements of the array are required potentially extensive

shifting when inserting a new element

 linked lists, collections of
 nodes storing data and links to other nodes

 independent memory locations (nodes) that store data
 links to other nodes

 the addresses of the nodes
 follow the links to move between nodes

 Utilize pointer to implement linked lists,
 providing great flexibility

Introduction

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

class IntSLLNode {
public:

IntSLLNode() {
next = 0;

}
IntSLLNode(int i, IntSLLNode *in = 0){

info = i; next = in;
}
int info;
IntSLLNode *next;

}

A node consists of two data members,
 info - store the node’s information content
 next - point to the next node in the list

Singly Linked Lists

Self-referential objects: IntSLLNode is
defined in terms of itself

Singly linked list: A node has a link only
to its successor in this sequence.

two
constructors

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Each node is composed of …
 a data and a link (the address) to the next node in the sequence

 Use the single variable p (e.g., IntSLLNode *p) to access the
entire list;

 Has a null pointer (\) in the last node in the list
 links have “direction”
 Let’s create the linked list

Singly Linked Lists (cont.)
data

link

data data

link link

note: the next of last node is a
null pointer.

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 create the first node and make p point to this first node
 four steps:

 a new IntSLLNode and p are created (Figure a)
 set info of this new node to 10 (Figure b)
 set next of this new node to null (Figure c)
 make p point to this new node (Figure d)

Singly Linked Lists (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 create the second node and make first node point to second node
 four steps:

 a new IntSLLNode is created (Figure e)
 set info of this new node to 8 (Figure f)
 set next of this new node to null (Figure g)
 make the first node point to this second node (Figure h)

Singly Linked Lists (cont.)

(the next member of the node pointed to by p)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 A disadvantage of single-linked lists:
 the longer the list, the longer the chain of next pointers that need

to be followed to a given node
 reduce flexibility, and is prone to errors

 An alternative, use an additional pointer to the end of the list
 keep two pointers: one to the first node; one to the last node

Singly Linked Lists (cont.)

(the next member of the second node in the list)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Uses two classes:
 IntSLLNode, define the nodes of the list
 IntSLList, define two pointers,

 head and tail (e.g., IntSLLNode *head, *tail)

Singly Linked Lists (cont.)

not part of the list; just for accessing the list

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Insertion: a node is added at the beginning of a list
1. create a new (empty) node (figure a)
2. initialize the info member of the node (figure b)
3. initialize the next member to point to the first node in the list,

which is the current value of head (figure c)
4. update the head to point to the new node (figure d)

Singly Linked Lists (cont.)

existing linked list
with three nodes

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Insertion: a node at the end of a list
 create the new node and initialize

the info member of the node (figures
a and b)

 initialize the next member to null,
since the node is at the end of the
list (figure c)

 set the next member of the current
last node to point to the new node
(figure d)

 Since the new node is now the end
of the list, update the tail pointer to
point to it (figure e)

 if the list is initially empty, both head
and tail would be set to point to the
new node

Singly Linked Lists (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Deletion: at the beginning of the list
 returning the value stored in the node
 releasing the memory occupied by the node
 first retrieve the value (info) stored in the first node
 use a temporary pointer to point to the first node
 set head to point to head → next
 delete the former first node, releasing its memory
 note that,

 when a single node is in the list, requiring that head and tail be
set to null to indicate the list is now empty

Singly Linked Lists (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Singly Linked Lists (cont.)

 Deletion (cont.): at the end of a list
 back the tail pointer to the previous node in list

 this cannot be done directly
 need a temporary pointer tmp to traverse the

list until tmp → next = tail
 once have located that node, retrieve the value

contained in tail → info, delete that node, and
set tail = tmp

	Linked Lists
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12

