
CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Linked Lists

Lecture 03

Instructor: Dr. Cong Pu, Ph.D.

cong.pu@okstate.edu

Adapted partially from Data Structures and Algorithms in Java, M. T. Goodrich, R. Tamassia and M. H.
Goldwasser, Sixth Edition, Wiley; Data Structures and Algorithms in C++, Adam Drozdek, 4th Edition,

Cengage Learning

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Limitations of arrays,
 the size of the array must be known at the time the code is

compiled
 the elements of the array are required potentially extensive

shifting when inserting a new element

 linked lists, collections of
 nodes storing data and links to other nodes

 independent memory locations (nodes) that store data
 links to other nodes

 the addresses of the nodes
 follow the links to move between nodes

 Utilize pointer to implement linked lists,
 providing great flexibility

Introduction

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

class IntSLLNode {
public:

IntSLLNode() {
next = 0;

}
IntSLLNode(int i, IntSLLNode *in = 0){

info = i; next = in;
}
int info;
IntSLLNode *next;

}

A node consists of two data members,
 info - store the node’s information content
 next - point to the next node in the list

Singly Linked Lists

Self-referential objects: IntSLLNode is
defined in terms of itself

Singly linked list: A node has a link only
to its successor in this sequence.

two
constructors

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Each node is composed of …
 a data and a link (the address) to the next node in the sequence

 Use the single variable p (e.g., IntSLLNode *p) to access the
entire list;

 Has a null pointer (\) in the last node in the list
 links have “direction”
 Let’s create the linked list

Singly Linked Lists (cont.)
data

link

data data

link link

note: the next of last node is a
null pointer.

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022



 create the first node and make p point to this first node
 four steps:

 a new IntSLLNode and p are created (Figure a)
 set info of this new node to 10 (Figure b)
 set next of this new node to null (Figure c)
 make p point to this new node (Figure d)

Singly Linked Lists (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022



 create the second node and make first node point to second node
 four steps:

 a new IntSLLNode is created (Figure e)
 set info of this new node to 8 (Figure f)
 set next of this new node to null (Figure g)
 make the first node point to this second node (Figure h)

Singly Linked Lists (cont.)

(the next member of the node pointed to by p)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 A disadvantage of single-linked lists:
 the longer the list, the longer the chain of next pointers that need

to be followed to a given node
 reduce flexibility, and is prone to errors

 An alternative, use an additional pointer to the end of the list
 keep two pointers: one to the first node; one to the last node

Singly Linked Lists (cont.)

(the next member of the second node in the list)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Uses two classes:
 IntSLLNode, define the nodes of the list
 IntSLList, define two pointers,

 head and tail (e.g., IntSLLNode *head, *tail)

Singly Linked Lists (cont.)

not part of the list; just for accessing the list

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Insertion: a node is added at the beginning of a list
1. create a new (empty) node (figure a)
2. initialize the info member of the node (figure b)
3. initialize the next member to point to the first node in the list,

which is the current value of head (figure c)
4. update the head to point to the new node (figure d)

Singly Linked Lists (cont.)

existing linked list
with three nodes

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Insertion: a node at the end of a list
 create the new node and initialize

the info member of the node (figures
a and b)

 initialize the next member to null,
since the node is at the end of the
list (figure c)

 set the next member of the current
last node to point to the new node
(figure d)

 Since the new node is now the end
of the list, update the tail pointer to
point to it (figure e)

 if the list is initially empty, both head
and tail would be set to point to the
new node

Singly Linked Lists (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Deletion: at the beginning of the list
 returning the value stored in the node
 releasing the memory occupied by the node
 first retrieve the value (info) stored in the first node
 use a temporary pointer to point to the first node
 set head to point to head → next
 delete the former first node, releasing its memory
 note that,

 when a single node is in the list, requiring that head and tail be
set to null to indicate the list is now empty

Singly Linked Lists (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Singly Linked Lists (cont.)

 Deletion (cont.): at the end of a list
 back the tail pointer to the previous node in list

 this cannot be done directly
 need a temporary pointer tmp to traverse the

list until tmp → next = tail
 once have located that node, retrieve the value

contained in tail → info, delete that node, and
set tail = tmp

	Linked Lists
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12

