Linked Lists

Lecture 04
Instructor: Dr. Cong Pu, Ph.D.

cong.pu@okstate.edu

Adapted partially from Data Structures and Algorithms in Java, M.T. Goodrich, R. Tamassia and M. H.
Goldwasser, Sixth Edition, Wiley; Data Structures and Algorithms in C++,Adam Drozdek, 4th Edition,
Cengage Learning

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

Singly Linked Lists (cont.)

= Deletion (cont.): at the middle of a list

locate the specific node, then link around (@
it by linking the predecessor of this node
directly to its successor

need to keep track of the predecessor L
node, and need to keep track of the node
containing the target value i
require two extra pointers, pred and

tmp, initialized to the first and second

nodes in the list, respectively (@

traverse the list until tmp — info matches
the target value

head G pred tmp tail
- /> /"' . /-b
head pred tmp tail
e 5 | = < \:
> 2 e Ve Ve
hq\zj(’j. pred m&l (a\zﬁl
6 | 2 q || =
1 f

L
head pred tmp tail

Singly Linked Lists (cont.)

= Deletion (cont.): at the middle of a list

= set pred — next = tmp — next,
“bypasses” the target node, allowing it
to be deleted

= several special cases to consider

= removing a node from an empty list
or trying to delete a value that isn’t
in the list

= deleting the only node in the list

= removing the first or last node
from a list with at least two nodes

(a)

(b)

(c)

(d)

head ed tm
(:f pr p

.

6 < 8
. /> /"' . /-b
head pred tmp tail
e 5 | = < B ey
- /,4 /.—> - /'b
ht"ii pred m&ll (a\i-l
6 | 2 8 | ~
1 =

N

head pred tmp tail
s I = - =
Ve e

_L Singly Linked Lists (cont.)

= Deletion (cont.): at the middle of a list
void IntSLList::deleteNode(int el) {

if (head != 0) // if non-empty list;
if (head == tail && el == head->info) { // if only one
delete head; // node on the list;
head = tail = 9;
}
else if (el == head-»>info) { // if more than one node on the list
IntSLLNode *tmp = head;
head = head->next;
delete tmp; // and old head is deleted;
}
else { // if more than one node in the list
IntSLLNode *pred, *tmp;
for (pred = head, tmp = head-»>next; // and a non-head node
tmp != 8 && ! (tmp->info == el);// is deleted;
pred = pred->next, tmp = tmp->next);
if (tmp 1= 8) {
pred->next = tmp->next;
if (tmp == tail)
tail = pred;
delete tmp;
}
}

CS 3353: Data Struct.

Singly Linked Lists (cont.)

= Deletion (cont.): several special cases for consideration

= An attempt to remove a node from an empty list, in which case the
function is immediately exited

= Deleting the only node from a one-node linked list
= both head and tail are set to null

= Removing the first node of the list with at least two nodes, which
requires updating head

= Removing the last node of the list with at least two nodes, leading to
the update of talil

= An attempt to delete a node with a humber that is not in the list

= do nothing

Singly Linked Lists (cont.)

s Searching
= scan a linked list to find a particular data member
= no modification to the list
= use a single temporary pointer tmp

= traverse the list until
head tail
s

R
R e VOl e 720w Vi =

-] = =}

the info member of the node tmp points to matches the
target, or

= tmp — next is null
reached the end of the list and the search fails

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

	Linked Lists
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6

