Linked Lists

Lecture 05
Instructor: Dr. Cong Pu, Ph.D.

cong.pu@okstate.edu

Adapted partially from Data Structures and Algorithms in Java, M.T. Goodrich, R. Tamassia and M. H.
Goldwasser, Sixth Edition, Wiley; Data Structures and Algorithms in C++,Adam Drozdek, 4th Edition,
Cengage Learning

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

Doubly Linked Lists

= Singly linked lists
= difficulty in deleting a node from the end of a singly linked list

= continually scan to the node just before the end in order to delete
correctly

= To address this problem,

= redefine the node structure and add a second pointer that points
to the predecessor

= doubly linked lists

head tail functions for processing doubly linked
k» : L» lists are more complicated
6 5 8 * maintaining one more pointer
7{ 7Y \
\ - -

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

Doubly Linked Lists (cont.)

head tail
> 6 5 — 8
(a) «: \ #7{ \
\ - -
head tail

DLLNode *p;

6 5 k+ 8 10
(b) ,: \ 17Y \ p = new DLLNode(10);

head tail P->next = O;

6 5 > 8 10

(c) #: \ #7{ \ \
\

m Insertion: at the end of a list

m create a new node and initialize the data member

= since being inserted at the end of the list, set its next member to null -,

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

Doubly Linked Lists (cont.)

head
Kx*' 6
(d)
\
head
Kx*’ 6
(e)
\
head
\\,_ 6

(f)

\

-

= Insertion (cont.): at the end of a list

p->prev = tail;
tail->next = p;

tail = p;

= set the prev member to tail to link it back to the former end of the list

= set the next member of the previous node to point to the new node

= set the tail pointer now to point to this new node

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

Doubly Linked Lists (cont.)

6 5 8 10
() ~: \ ,: \ /ﬁ \
\

- — P

= Insertion (cont.): at the end of a list
= set the next member of the previous node to point to the new node
= assumed that the predecessor exists
= what if it is an empty linked list?
new node is the only node
no predecessor

set head to point to the new node
CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

Doubly Linked Lists (cont.)

class DLLNode {
public:
DLLNode() {
next = prev = 0;

}
DLLNode(int el, DLLNode *n = @, DLLNode *p = @) {

info = el; next = n; prev = p;

}
int info;
DLLNode *next, *prev;
}s
= Insertion (cont.): at the end of a list
= create a new node and initialize the data member
= since being inserted at the end of the list, set its next member to null
= set the prev member to tail to link it back to the former end of the list
= set the next member of the previous node to point to the new node

= set the tail pointer now to point to this new node
CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

Doubly Linked Lists (cont.)

= Insertion (cont.): at the end of a list

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

create a new node and initialize the data member

since being inserted at the end of the list, set its next member to null
set the prev member to tail to link it back to the former end of the list
set the next member of the previous node to point to the new node

set the tail pointer

void DoublylLinkedList::addToDLLTail(int el) {
if (tail !'= @) {
tail = new DLLNode(el,0,tail);
tail->prev->next = tail,;
}
else head = tail = new DLLNode(el);

¥

Doubly Linked Lists (cont.)

head tail

N — >

6 5 3 10

- TIEET
6 5 3 10

() 7Y ’K ’7§ \ tail = tail->prev;

i _
heii (ml delete tail->next:

6 5 8 Vs
© 7? ’7?] tail->next = 0O;

head tail
o el

6 5 8
(d) 1 \ ’7Y \

= Deletion: at the end of a list
= adirect link to the predecessor of last node in the list
= no need to traverse the list to find the predecessor

= retrieve the data member from the node, then set tail to the node’s
predecessor

= the predecessor becomes the last node
CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

Doubly Linked Lists (cont.)

= Deletion (cont.)
= special cases
= if the list is empty,

an attempt to delete a node should be handled and reported
to the user

e.g., isEmpty();
= If the node being deleted is the only node in the list,
head and tail need to be set to null

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

Doubly Linked Lists (cont.)

m Deletion: at the end of a list e a
. . . 6 5 8 > 10
= adirect link to the predecessor of last node in « 7{ 7Y 7{ \
the |ISt head \ - - — tail -
—oneed-to-traverse the list to find th T3 (:‘ 10
e list to e /X ! 7i \
\

predecessor

= retrieve the data member from the node, then 5
. ’ (c
set tail to the node’s predecessor)

Al
e <
i

1 X

= the predecessor becomes the last node . ™
int DoublylLinkedList::deleteFromDLLTail() { (d) - SJ7(?
int el = tail->info; L
if (head == tail) { // if only one DLLNode on the list;

delete head;
head = tail = 0;

}

else { // 1f more than one DLLNode in the list;
tail = tail->prev;
delete tail->next;
tail->next = 9;

}

return el;

Yo G

CS 3353:Data St

Doubly Linked Lists (cont.)

head tail head = head->next;

> >

6 5 8 10
(a) 7? ,7? ,K\ delete head->prev;

\ - - -

head->prev = O;

eletion: at the beginning of a list
a direct link to the successor of first node in the list

retrieve the data member from the first node, then set head to the
node’s successor

the successor becomes the first node

int DoublyLinkedList::deleteFromDLLHead() {

CS 3353: Data Struct)

int el = head->info;

if (head == tail) { // if only one DLLNode on the list;
delete head;
head = tail = ©;

}

else { // if more than one DLLNode in the list;
head = head->next;
delete head->prev;
head->prev = 0,

}

return el;

Yo G

Circular Lists

= The nodes form a ring
m the list is finite and each node has a successor

= in implementation require only one permanent pointer (usually
referred to as tail)

current
\ o —
Example:

» several people request to use the same resource for
same amount of time
* each people has a fair share of the resource
» all people form a circular list
» after one person used the resource, we
move to the next person

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

Circular Lists (cont.)

tail CLLNode *p; tal CLLNode *p;
\ - N 1
b p = new CLLNode(2): b p = new CLLNode(2):
tail P->next = tail; tail P->next = tail;
2 e 1 1 e 2
tail il tAID = p;

Q; 1T

tail tail

k—» K—P

(a) (b)
m Insertions: at the front and the end of circular lists

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

Circular Lists (cont.)

= Insertions (cont.): at the front and the end of circular lists

void addToTail(int el) {

it (iskmpty()) {
tail = new IntSLLNode(el);
tail->next = tail;

+

else {
tail->next = new IntSLLNode(el,tail->next);
tail = tairl->next;

}

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

Circular Lists (cont.) i
current

\ >

6/>5/>8/>10

— — — -

= A few problems:

= in deleting last node, require a loop to locate the predecessor of the tail
node, e.g., similar to singly linked lists

= operations that require processing the list in reverse are going to be
inefficient, e.g., directional

= Doubly circular linked list? form two rings
= going forward through the next pointers, and

= going backwards through the prev pointers

i L
i e e
—

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

	Linked Lists
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15

