
CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Linked Lists

Lecture 05

Instructor: Dr. Cong Pu, Ph.D.

cong.pu@okstate.edu

Adapted partially from Data Structures and Algorithms in Java, M. T. Goodrich, R. Tamassia and M. H. 
Goldwasser, Sixth Edition, Wiley; Data Structures and Algorithms in C++, Adam Drozdek, 4th Edition, 

Cengage Learning



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Singly linked lists 
 difficulty in deleting a node from the end of a singly linked list 
 continually scan to the node just before the end in order to delete 

correctly

 To address this problem, 
 redefine the node structure and add a second pointer that points 

to the predecessor
 doubly linked lists

Doubly Linked Lists

functions for processing doubly linked 
lists are more complicated
• maintaining one more pointer



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Insertion: at the end of a list 
 create a new node and initialize the data member
 since being inserted at the end of the list, set its next member to null

Doubly Linked Lists (cont.)

DLLNode *p;

p = new DLLNode(10);

P->next = 0;



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Doubly Linked Lists (cont.)

 Insertion (cont.): at the end of a list 
 set the prev member to tail to link it back to the former end of the list
 set the next member of the previous node to point to the new node
 set the tail pointer now to point to this new node

p->prev = tail;

tail->next = p;

tail = p;



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Doubly Linked Lists (cont.)

 Insertion (cont.): at the end of a list 
 set the next member of the previous node to point to the new node

 assumed that the predecessor exists
 what if it is an empty linked list?

 new node is the only node
 no predecessor
 set head to point to the new node 



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Doubly Linked Lists (cont.)

 Insertion (cont.): at the end of a list 
 create a new node and initialize the data member
 since being inserted at the end of the list, set its next member to null
 set the prev member to tail to link it back to the former end of the list
 set the next member of the previous node to point to the new node
 set the tail pointer now to point to this new node



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Doubly Linked Lists (cont.)

 Insertion (cont.): at the end of a list 
 create a new node and initialize the data member
 since being inserted at the end of the list, set its next member to null
 set the prev member to tail to link it back to the former end of the list
 set the next member of the previous node to point to the new node
 set the tail pointer



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Deletion: at the end of a list
 a direct link to the predecessor of last node in the list

 no need to traverse the list to find the predecessor
 retrieve the data member from the node, then set tail to the node’s 

predecessor
 the predecessor becomes the last node

Doubly Linked Lists (cont.)

tail = tail->prev;

delete tail->next;

tail->next = 0;



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Deletion (cont.)
 special cases 

 if the list is empty, 
 an attempt to delete a node should be handled and reported 

to the user
 e.g., isEmpty(); 

 If the node being deleted is the only node in the list, 
 head and tail need to be set to null

Doubly Linked Lists (cont.)



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Deletion: at the end of a list
 a direct link to the predecessor of last node in 

the list
 no need to traverse the list to find the 

predecessor
 retrieve the data member from the node, then 

set tail to the node’s predecessor
 the predecessor becomes the last node

Doubly Linked Lists (cont.)



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Deletion: at the beginning of a list
 a direct link to the successor of first node in the list
 retrieve the data member from the first node, then set head to the 

node’s successor
 the successor becomes the first node

Doubly Linked Lists (cont.)
head = head->next;

delete head->prev;

head->prev = 0;



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 The nodes form a ring
 the list is finite and each node has a successor
 in implementation require only one permanent pointer (usually 

referred to as tail)

Circular Lists

Example: 
• several people request to use the same resource for 

same amount of time
• each people has a fair share of the resource
• all people form a circular list

• after one person used the resource, we 
move to the next person



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Circular Lists (cont.)

 Insertions: at the front and the end of circular lists

CLLNode *p;

p = new CLLNode(2);

P->next = tail;

tail->next = p;

CLLNode *p;

p = new CLLNode(2);

P->next = tail;

tail->next = p;

tail = p;



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Insertions (cont.): at the front and the end of circular lists

void addToTail(int el) {
if (isEmpty()) {
tail = new IntSLLNode(el);
tail->next = tail;

}
else {
tail->next = new IntSLLNode(el,tail->next);
tail = tail->next;

}
}

Circular Lists (cont.)



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 A few problems: 
 in deleting last node, require a loop to locate the predecessor of the tail

node, e.g., similar to singly linked lists
 operations that require processing the list in reverse are going to be 

inefficient, e.g., directional

 Doubly circular linked list? form two rings
 going forward through the next pointers, and 
 going backwards through the prev pointers

Circular Lists (cont.) tail


	Linked Lists
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15

