
CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Linked Lists

Lecture 05

Instructor: Dr. Cong Pu, Ph.D.

cong.pu@okstate.edu

Adapted partially from Data Structures and Algorithms in Java, M. T. Goodrich, R. Tamassia and M. H. 
Goldwasser, Sixth Edition, Wiley; Data Structures and Algorithms in C++, Adam Drozdek, 4th Edition, 

Cengage Learning



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Singly linked lists 
 difficulty in deleting a node from the end of a singly linked list 
 continually scan to the node just before the end in order to delete 

correctly

 To address this problem, 
 redefine the node structure and add a second pointer that points 

to the predecessor
 doubly linked lists

Doubly Linked Lists

functions for processing doubly linked 
lists are more complicated
• maintaining one more pointer



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Insertion: at the end of a list 
 create a new node and initialize the data member
 since being inserted at the end of the list, set its next member to null

Doubly Linked Lists (cont.)

DLLNode *p;

p = new DLLNode(10);

P->next = 0;



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Doubly Linked Lists (cont.)

 Insertion (cont.): at the end of a list 
 set the prev member to tail to link it back to the former end of the list
 set the next member of the previous node to point to the new node
 set the tail pointer now to point to this new node

p->prev = tail;

tail->next = p;

tail = p;



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Doubly Linked Lists (cont.)

 Insertion (cont.): at the end of a list 
 set the next member of the previous node to point to the new node

 assumed that the predecessor exists
 what if it is an empty linked list?

 new node is the only node
 no predecessor
 set head to point to the new node 



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Doubly Linked Lists (cont.)

 Insertion (cont.): at the end of a list 
 create a new node and initialize the data member
 since being inserted at the end of the list, set its next member to null
 set the prev member to tail to link it back to the former end of the list
 set the next member of the previous node to point to the new node
 set the tail pointer now to point to this new node



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Doubly Linked Lists (cont.)

 Insertion (cont.): at the end of a list 
 create a new node and initialize the data member
 since being inserted at the end of the list, set its next member to null
 set the prev member to tail to link it back to the former end of the list
 set the next member of the previous node to point to the new node
 set the tail pointer



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Deletion: at the end of a list
 a direct link to the predecessor of last node in the list

 no need to traverse the list to find the predecessor
 retrieve the data member from the node, then set tail to the node’s 

predecessor
 the predecessor becomes the last node

Doubly Linked Lists (cont.)

tail = tail->prev;

delete tail->next;

tail->next = 0;



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Deletion (cont.)
 special cases 

 if the list is empty, 
 an attempt to delete a node should be handled and reported 

to the user
 e.g., isEmpty(); 

 If the node being deleted is the only node in the list, 
 head and tail need to be set to null

Doubly Linked Lists (cont.)



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Deletion: at the end of a list
 a direct link to the predecessor of last node in 

the list
 no need to traverse the list to find the 

predecessor
 retrieve the data member from the node, then 

set tail to the node’s predecessor
 the predecessor becomes the last node

Doubly Linked Lists (cont.)



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Deletion: at the beginning of a list
 a direct link to the successor of first node in the list
 retrieve the data member from the first node, then set head to the 

node’s successor
 the successor becomes the first node

Doubly Linked Lists (cont.)
head = head->next;

delete head->prev;

head->prev = 0;



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 The nodes form a ring
 the list is finite and each node has a successor
 in implementation require only one permanent pointer (usually 

referred to as tail)

Circular Lists

Example: 
• several people request to use the same resource for 

same amount of time
• each people has a fair share of the resource
• all people form a circular list

• after one person used the resource, we 
move to the next person



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Circular Lists (cont.)

 Insertions: at the front and the end of circular lists

CLLNode *p;

p = new CLLNode(2);

P->next = tail;

tail->next = p;

CLLNode *p;

p = new CLLNode(2);

P->next = tail;

tail->next = p;

tail = p;



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Insertions (cont.): at the front and the end of circular lists

void addToTail(int el) {
if (isEmpty()) {
tail = new IntSLLNode(el);
tail->next = tail;

}
else {
tail->next = new IntSLLNode(el,tail->next);
tail = tail->next;

}
}

Circular Lists (cont.)



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 A few problems: 
 in deleting last node, require a loop to locate the predecessor of the tail

node, e.g., similar to singly linked lists
 operations that require processing the list in reverse are going to be 

inefficient, e.g., directional

 Doubly circular linked list? form two rings
 going forward through the next pointers, and 
 going backwards through the prev pointers

Circular Lists (cont.) tail


	Linked Lists
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15

