
CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Stack and Queue

Lecture 07

Instructor: Dr. Cong Pu, Ph.D.

cong.pu@okstate.edu

Adapted partially from Data Structures and Algorithms in Java, M. T. Goodrich, R. Tamassia and M. H.
Goldwasser, Sixth Edition, Wiley; Data Structures and Algorithms in C++, Adam Drozdek, 4th Edition,

Cengage Learning

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 A stack ??
 a restricted access linear data structure

 only be accessed at one of its ends for adding and removing
data elements

 e.g., a stack of trays in a cafeteria
 trays are removed from the top and placed back on the top

 last-in first-out (LIFO) structure

 Restrictions
 only remove items that are available
 can’t add more items if there is no room

Stacks

needs your attention
during the implementation

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Stack operations:
 clear(): clears the stack
 isEmpty(): determines if the stack is empty
 push(el): pushes the data item el onto the top of the stack
 pop(): removes the top element from the stack
 topEl(): returns the value of the top element of the stack

without removing it

 E.g., a series of pushes and pops

Stacks (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Implementation of stack
 natural implementation: array

Stacks (cont.)

header guard: prevent header files
from being included multiple times
ref: https://www.educative.io/answers/what-are--sharpifndef-and--sharpdefine-used-for-in-cpp

sequence containers representing
arrays that can change in size
ref: https://cplusplus.com/reference/vector/vector/

class template: a class defines something
that is independent of the data type
ref: https://www.geeksforgeeks.org/templates-cpp/

https://www.educative.io/answers/what-are--sharpifndef-and--sharpdefine-used-for-in-cpp
https://cplusplus.com/reference/vector/vector/
https://www.geeksforgeeks.org/templates-cpp/

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Implementation of stack: array
 push(el): pushes the data

item el onto the top of
the stack

Stacks (cont.)

vector::push_back: adds a new
element at the end of the vector,
after its current last element.
ref: https://cplusplus.com/reference/vector/vector/push_back/

https://cplusplus.com/reference/vector/vector/push_back/

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Implementation of stack: array
 pop(): removes the

top element from the stack

Stacks (cont.)

vector::back: returns a reference
to the last element in the vector
ref: https://cplusplus.com/reference/vector/vector/back/

vector::pop_back: removes the
last element in the vector
ref: https://cplusplus.com/reference/vector/vector/pop_back/

https://cplusplus.com/reference/vector/vector/back/
https://cplusplus.com/reference/vector/vector/pop_back/

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Implementation of stack: array
 topEl(): returns the value

of the top element of
the stack without removing
it

Stacks (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Implementation of stack: array
 isEmpty(): determines if

the stack is empty

Stacks (cont.)

vector::empty: returns whether
the vector is empty
ref: https://cplusplus.com/reference/vector/vector/empty/

https://cplusplus.com/reference/vector/vector/empty/

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Implementation of stack: array
 clear(): clears the stack

Stacks (cont.)

vector::clear: removes all
elements from the vector
ref: https://cplusplus.com/reference/vector/vector/clear/

vector::reserve: requests that the
vector capacity be at least enough
to contain capacity elements
ref: https://cplusplus.com/reference/vector/vector/reserve/

https://cplusplus.com/reference/vector/vector/clear/
https://cplusplus.com/reference/vector/vector/reserve/

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Another implementation of stack: linked list

Stacks (cont.)

lists are sequence containers that allow constant
time insert and erase operations anywhere within
the sequence, and iteration in both directions.
ref: https://cplusplus.com/reference/list/list/

https://cplusplus.com/reference/vector/vector/

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Another implementation of stack:
linked list

Stacks (cont.)

list::member functions
ref: https://cplusplus.com/reference/list/list/

https://cplusplus.com/reference/list/list/

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Particularly useful in situations
 data have to be stored and retrieved in reverse order

 Numerous applications:
 balancing delimiters in program code, e.g., [, {, (
 evaluating expressions and parsing syntax
 etc…

Stacks (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Balancing delimiters in program
code, e.g., [, {, ((cont.)
 open delimiters, e.g., ‘(‘, ‘[‘, ‘{‘,
 close delimiters, e.g., ‘)’, ’]’, ’}’

Stacks (cont.)

 matching delimiters

 unmatching delimiters

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 A delimiter matching algorithm:
 first opening delimiter must be

matched with the last closing
delimiter

 delimiter can be separated
 all delimiters following it and

preceding its match have been
matched

 e.g.,
while (m < (n[8] + o))

 e.g., s = t[5] + u / (v * (w+y));

Stacks (cont.)

while not end of file {
if ch is ‘(‘, ‘[‘, or ‘{‘
push (ch);

else if ch is ‘)’, ‘]’, or ‘}’
if ch and popped off

delimiter do not match
failure;

read next character ch;
}

if stack is empty
success;

else
failure;

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Stacks (cont.)
 s = t[5] + u / (v * (w + y));

 checking delimiters: open delimiters, e.g., ‘(‘, ‘[‘, ‘{‘;
close delimiters, e.g., ‘)’, ’]’, ’}’

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Stacks (cont.)
 s = t[5] + u / (v * (w + y));

 checking delimiters: open delimiters, e.g., ‘(‘, ‘[‘, ‘{‘;
close delimiters, e.g., ‘)’, ’]’, ’}’

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Stacks (cont.)
 s = t[5] + u / (v * (w + y));

 checking delimiters: open delimiters, e.g., ‘(‘, ‘[‘, ‘{‘;
close delimiters, e.g., ‘)’, ’]’, ’}’

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Stacks (cont.)

 s = t[5] + u / (v * (w + y));
 checking delimiters
 open delimiters, e.g., ‘(‘, ‘[‘, ‘{‘,
 close delimiters, e.g., ‘)’, ’]’, ’}’

	Stack and Queue
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18

