Stack and Queue

Lecture 08
Instructor: Dr. Cong Pu, Ph.D.

cong.pu@okstate.edu

Adapted partially from Data Structures and Algorithms in Java, M.T. Goodrich, R. Tamassia and M. H.
Goldwasser, Sixth Edition, Wiley; Data Structures and Algorithms in C++,Adam Drozdek, 4th Edition,
Cengage Learning

Yo G

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

Queues

= A queue??
= a waiting line
rows by adding elements to its end
"8 4 8 } both ends are used
= shrinks by taking elements from its front

= use both ends with additions restricted to one end (the rear) and
deletions to the other (the front)

= the last element can be removed when all preceding elements
are removed

s first-in first-out (FIFO) structure

Front

?1 Y LA
i@

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

Queues (cont.)

= Queue operations:
= clear(): clears the queue
= isEmpty(): determines if the queue is empty
= enqueue(el): adds the data item el to the end of the queue
s dequeue():removes the element from the front of the queue
s firstEl(): returns the value of the first element of the queue without
removing it

= E.g.,a series of enqueues and dequeues

enqueue(10 dequeue enqueue(/
}) en;ueue(S) E enq(ueue(15) ;) dequeue
10 101 5 5 5115 511517 15

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

Queues (cont.)

= Implementing using an array (not the best option)

= treats the array as though it were circular

first last
Y y
2 8
l enqueue(6)
first last
{ |
2 8|6

first last
| |
21418
l enqueue(6)
last first
| {
6 21418

circle back to the beginning

first

Queues (cont.)

= Implementing using an array (not the best option)

= when is a queue full??

first last last first last < first
v v v 8 | 4
4 12 (15{11|10] 6|8 106|842

15|11 a ﬁ
(a) (b)
first in the first cell first precedes w a
last in the last cell last immediately n

when the queue is full (c)

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

Queues:Array Implementation

#ifndef ARRAY_QUEUE

#define ARRAY —Aw that is independent of the data type

ref: https://www.geeksforgeeks.org/templates-cpp/

class template: a class defines something

size of queue

3
4
5
6 template<class T, int size = 100>
7 class ArrayQueue {)
8
9

public:
ArrayQueue() {

10 first = last = -1;
11 }
12 void enqueue(T);
13 T dequeue();
14 bool isFull() {
15 return first == 0 && last == size-1 || first == last + 1;
16 }
17 bool isEmpty() { ‘\\\
18 return first == -1; two possible scenarios for full queue
19 }
20 private:
21 int first, last; |

two “pointers” for queue

22 T storage[size];
cs335 23 }; .

https://www.geeksforgeeks.org/templates-cpp/

Queues:Array Implementation

template<class T, int size>
volid ArrayQueue<T,size>::enqueue(T el) {
if (lisFull())

if (last == size-1 || last == -1) { ,
T o7 = el < check to see whether circle back
> LOrage = S2 < circle back to the beginning of array
last = 9;
if (first == -1) _— queue is empty before enqueue!?
first = @;
} not circle back
else 5t0:355£++135t1 ="515“// template<class T, int size>
else cout << "Full queue.\n"; T ArrayQueue<T,size>::dequeue() {
} T tmp,

tmp = storage[first];
_if (first == last)

last = first = -1;
the last element of array is ~else if (first == size-1)
the first element of queue? ; first = 0;

one element?

else first++;
return tmp;

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022 o

Queues (cont.)

= |Implementing queue using
= array (e.g., vector) — enqueue and dequeue “pointers”
= double linked list with “head” and “tail”’ pointers
= inserting at the end of list

= deleting at the beginning of list

fenqueue(1 o)cenqueue(5) (, dequeue Jenqueue(] S)Y(enqueueﬂ) - dequeue

-
5 15 15 7
10 10 5 5 5 15
head tail. head tai head tail. head tail head tail head tail
K* 10 > K* 10 e 5 k’ 5 > k’ 5 > 15 k’ 5 15 e 7 K’ 15 he 7
\ 7(— 7(\ 7(7(\ 7(\
\ \ B \ \ - \ B B \ B

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

Queues: Linked List
Implementation

list::member functions

ref: https://cplusplus.com/reference/list/list/

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

#include <list>

template<class T>
class Queue {
public:

Queue() {
}

void clear() {
lst.clear();

}

bool isEmpty() const {
return lst.empty();

}

T& front() {
return 1lst.front();

}

T dequeue() {
T el = 1st.front();
1st.pop_front();
return el;

¥

void enqueue(const T& el) {
1st.push_back(el);

}

private:

}s

1ist<T> 1lst;

https://cplusplus.com/reference/list/list/

Queues (cont.)

= Used in a wide variety of applications
= especially in studies of service simulations

= e.g,a very advanced body of mathematical theory, called queuing
theory

= various scenarios are analyzed and models are built that use
queues

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

Priority Queues

= In some circumstances,

= priorities associated the elements of the
queue > affect the order of processing

= A priority queue !
= elements are removed based on priority
and position
= difficulty in implementing such a structure

= trying to accommodate the priorities
while still maintaining efficient
enqueuing and dequeuing

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

	Stack and Queue
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11

