Recursion

Lecture 09

Instructor: Dr. Cong Pu, Ph.D.

cong.pu@okstate.edu

Adapted partially from Data Structures and Algorithms in Java, M. T. Goodrich, R. Tamassia and M. H. Goldwasser, Sixth Edition, Wiley; Data Structures and Algorithms in C++, Adam Drozdek, 4th Edition, Cengage Learning

Recursive Definitions

- Two parts of a *recursive definition*:
	- *anchor* or *ground case* (also sometimes called the *base case*)
		- **Example 1** establish the basis for all the other elements of the set
	- *inductive clause*
		- **Example 1** establish rules for the creation of new elements in the set
- For example, define the set of natural numbers:
	- $0 \in \mathbb{N}$ (anchor)
	- 2. if $n \in \mathbb{N}$, then $(n + 1) \in \mathbb{N}$ (inductive clause)
	- 3. there are no other objects in the set **N**
	- \blacksquare there may be other definitions

Recursive Definitions (cont.)

- Recursive definitions serve two purposes:
	- **generating new elements**
	- *testing* whether an element belongs to a set
- **IF In the case of** *testing*
	- *reducing* the problem to an even *simpler* problem
	- and so on
	- until it is reduced to the *anchor* problem

(you already have solution for anchor problem!!)

- E.g., is 23 a natural number?
	- \blacksquare | + 22, | + | + 2|, | + | + | + 20, ...

Recursive Definitions (cont.)

The *recursive definition* of the factorial function, !:

$$
n! = \begin{cases} 1 & \text{if } n = 0 \quad \text{(anchor)} \\ n \cdot (n-1)! & \text{if } n > 0 \quad \text{(inductive clause)} \end{cases}
$$

■ So, $3! = 3 \cdot 2! = 3 \cdot 2 \cdot 1! = 3 \cdot 2 \cdot 1 \cdot 0! = 3 \cdot 2 \cdot 1 \cdot 1 = 6$

undesirable feature: to determine the value of current element (s_n) , we have to compute the values of all of the previous elements $(s_1, ..., s_{n-1})$.

- Find a formula that is equivalent to the recursive one without referring to previous values
	- **for factorials, we can use** $n! = \prod_{i=1}^n i$

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022 **Filte 1** frequently non-trivial and often quite difficult to achieve

Recursive Definitions (cont.)

- From the standpoint of *computer science*,
	- *recursion* occurs frequently in *language definitions* as well as *programming*
- **The translation from specification to code is fairly straightforward;**

```
e.g., a factorial function in C++:
unsigned int factorial (unsigned int n){
   if (n == 0)
       return 1;
   else return n * factorial (n – 1);
}
```
- **Most modern programming languages incorporate mechanisms**
	- support the use of recursion, making it transparent to the user

recursion on computers are implemented using the run-time stack
CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

- What kind of information must we keep track of when a function is called?
	- **i** if the function has **parameters**??
		- need to be initialized to their corresponding arguments
	- where to resume the calling function once the called function is complete
		- **return address**
	- since functions can be called from other functions,
		- **Reep track of local variables** for scope purposes
	- **don't know in advance how many calls will occur,**
		- **stack**, an efficient location to save information
		- **e.g., dynamic allocation using the run-time stack**

at the beginning, main is call

- create a new *stack frame*
- main has no parameters
	- *stack frame* is *empty*

at the beginning, main is call

- create a new *stack frame*
- main has no parameters
	- *stack frame* is *empty*

• draw a box with a label and put content

11 main() when line of 7 of main is executed

- n is set to 4
- draw a box with a label and put content

1 en line of 8 of main is executed

- f is called
	- first determine the value of arg, n
		- n is 4 ; $(2nd arg is 2)$

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

• create a new *stack frame* containing arg values

when line of 8 of main is executed

- f is called
	- first determine the value of arg, n
		- n is 4 ; $(2nd arg is 2)$

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

• create a new *stack frame* containing arg values

- the stack frame for main is keeping track of where we were in that function
	- when f is done, we will return to that line

1 def f(x,y): $f:4$ **2 x += y 3 print x** 6 $\mathbf x$ **4 return x** y **5** $\overline{2}$ **6 def main(): 7 n = 4** here records where f was called $main:8$ **8 out = f(n,2) 9 print out** $\mathbf n$ 4 **10 11 main()** when line of 4 is executed return x to the place (line of 8) where f was called

• out has value 4

6

 $\overline{2}$

 $\overline{\mathbf{X}}$

y

1 def f(x,y): 2 x += y 3 print x 4 return x 5 6 def main(): 7 n = 4 8 out = f(n,2) 9 print out 10 11 main()

4

 $\mathbf n$

line of 9 is executed

print out

- Characterize the state of a function by a set of information
	- an *activation record* or *stack frame*
- **Every time a function is called,**
	- **EXTERM** its **activation record** is created and placed on the run-time stack
	- an *activation record* exists for as long as a function owning it is executing
		- **Private pool of info. for that function**
			- **External storing all info. necessary for function's operation and how** to return to where it was called from
		- *short life span*
			- **Example 21 Incident** dynamically allocated at function entry
			- **dynamically deallocated upon exiting**

- The following information stored on the run-time stack:
	- values of the function's parameters, addresses of reference variables (including arrays)
	- copies of local variables
	- the return address of the calling function
	- a dynamic link to the calling function's activation record
	- the function's return value if it is not void

1 def
$$
f(x,y)
$$
:
\n2 $x + y$
\n3 print x
\n4 return x

- A snapshot of run-time stack:
	- always contain the **current state** of the function
- e.g., main() \rightarrow f1() \rightarrow f2() \rightarrow f3()

- A snapshot of run-time stack:
	- always contain the **current state** of the function
- e.g., main() \rightarrow f1() \rightarrow f2() \rightarrow f3()
- Once f3() completes,
	- its record is **popped**
	- f2() can **resume**

 \vee 1

- A snapshot of run-time stack:
	- always contain the **current state** of the function
- e.g., main() \rightarrow f1() \rightarrow f2() \rightarrow f3()
- Once f2() completes,
	- its record is **popped**
	- f1() can **resume**

- A snapshot of run-time stack:
	- always contain the **current state** of the function
- e.g., main() \rightarrow f1() \rightarrow f2() \rightarrow f3()
- Once f1() completes,
	- **EXPLOM** its record is **popped**
	- main() can **resume**

Activation record of main()

- A snapshot of run-time stack:
	- always contain the **current state** of the function
- e.g., main() \rightarrow f1() \rightarrow f2() \rightarrow f3()
- Once main() completes,
	- **EXPLOM** its record is **popped**
	- program is finished

- If $f3()$ calls another function,
	- \blacksquare the new function has its activation record **pushed** onto the stack
	- f3() is **suspended**

- The use of *activation records* on the run-time stack
	- **Example 1** allow **recursion** to be implemented and handled correctly
- When *a function calls itself recursively*,
	- **push** a *new* activation record of *itself* on the stack
	- **suspend** the calling instance of the function
	- **allow** the new activation to carry on the process
- A recursive call
	- create a series of activation records for different instances of the **same** function

