
CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Recursion

Lecture 09

Instructor: Dr. Cong Pu, Ph.D.

cong.pu@okstate.edu

Adapted partially from Data Structures and Algorithms in Java, M. T. Goodrich, R. Tamassia and M. H.
Goldwasser, Sixth Edition, Wiley; Data Structures and Algorithms in C++, Adam Drozdek, 4th Edition,

Cengage Learning

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Two parts of a recursive definition:
 anchor or ground case (also sometimes called the base case)

 establish the basis for all the other elements of the set
 inductive clause

 establish rules for the creation of new elements in the set

 For example, define the set of natural numbers:
1. 0 N (anchor)
2. if n N, then (n + 1) N (inductive clause)
3. there are no other objects in the set N

 there may be other definitions

Recursive Definitions

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Recursive definitions serve two purposes:
 generating new elements
 testing whether an element belongs to a set

 In the case of testing
 reducing the problem to an even simpler problem
 and so on
 until it is reduced to the anchor problem

 E.g., is 23 a natural number?
 1 + 22, 1 + 1 + 21, 1 + 1 + 1 + 20, …

Recursive Definitions (cont.)

(you already have solution
for anchor problem!!)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 The recursive definition of the factorial function, !:

 So, 3! = 3 ∙ 2! = 3 ∙ 2 ∙ 1! = 3 ∙ 2 ∙ 1 ∙ 0! = 3 ∙ 2 ∙ 1 ∙ 1 = 6

 Find a formula that is equivalent to the recursive one without
referring to previous values
 for factorials, we can use
 frequently non-trivial and often quite difficult to achieve

()
1 if 0

!
1 ! if 0

n
n

n n n
 =

=  ⋅ − >

1
!

n

i
n i

=
=∏

Recursive Definitions (cont.)

(anchor)

(inductive clause)

undesirable feature: to determine the value of current element (sn), we
have to compute the values of all of the previous elements (s1, …, sn-1,)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Recursive Definitions (cont.)

 From the standpoint of computer science,
 recursion occurs frequently in language definitions as well as

programming

 The translation from specification to code is fairly straightforward;
 e.g., a factorial function in C++:

unsigned int factorial (unsigned int n){
if (n == 0)

return 1;
else return n * factorial (n – 1);

}

 Most modern programming languages incorporate mechanisms
 support the use of recursion, making it transparent to the user
 recursion on computers are implemented using the run-time stack

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 What kind of information must we keep track of when a function
is called?
 if the function has parameters??

 need to be initialized to their corresponding arguments
 where to resume the calling function once the called function is

complete
 return address

 since functions can be called from other functions,
 keep track of local variables for scope purposes

 don’t know in advance how many calls will occur,
 stack, an efficient location to save information
 e.g., dynamic allocation using the run-time stack

Function Calls and Recursive
Implementation

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Function Calls and Recursive
Implementation

at the beginning, main is call
• create a new stack frame
• main has no parameters

• stack frame is empty

1 def f(x,y):
2 x += y
3 print x
4 return x
5
6 def main():
7 n = 4
8 out = f(n,2)
9 print out
10
11 main()

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Function Calls and Recursive
Implementation

at the beginning, main is call
• create a new stack frame
• main has no parameters

• stack frame is empty

1 def f(x,y):
2 x += y
3 print x
4 return x
5
6 def main():
7 n = 4
8 out = f(n,2)
9 print out
10
11 main()

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Function Calls and Recursive
Implementation

1 def f(x,y):
2 x += y
3 print x
4 return x
5
6 def main():
7 n = 4
8 out = f(n,2)
9 print out
10
11 main() when line of 7 of main is executed

• n is set to 4
• draw a box with a label and put content

executing line of 7

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Function Calls and Recursive
Implementation

1 def f(x,y):
2 x += y
3 print x
4 return x
5
6 def main():
7 n = 4
8 out = f(n,2)
9 print out
10
11 main() when line of 7 of main is executed

• n is set to 4
• draw a box with a label and put content

executing line of 7

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Function Calls and Recursive
Implementation

1 def f(x,y):
2 x += y
3 print x
4 return x
5
6 def main():
7 n = 4
8 out = f(n,2)
9 print out
10
11 main() when line of 8 of main is executed

• f is called
• first determine the value of arg, n

• n is 4; (2nd arg is 2)
• create a new stack frame containing arg values

executing line of 8

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Function Calls and Recursive
Implementation

1 def f(x,y):
2 x += y
3 print x
4 return x
5
6 def main():
7 n = 4
8 out = f(n,2)
9 print out
10
11 main() when line of 8 of main is executed

• f is called
• first determine the value of arg, n

• n is 4; (2nd arg is 2)
• create a new stack frame containing arg values

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Function Calls and Recursive
Implementation

1 def f(x,y):
2 x += y
3 print x
4 return x
5
6 def main():
7 n = 4
8 out = f(n,2)
9 print out
10
11 main() Note:

• the stack frame for main is keeping track of
where we were in that function
• when f is done, we will return to that line

executing line of 2

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Function Calls and Recursive
Implementation

1 def f(x,y):
2 x += y
3 print x
4 return x
5
6 def main():
7 n = 4
8 out = f(n,2)
9 print out
10
11 main() when line of 2 is executed

• update x

executing line of 2

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Function Calls and Recursive
Implementation

1 def f(x,y):
2 x += y
3 print x
4 return x
5
6 def main():
7 n = 4
8 out = f(n,2)
9 print out
10
11 main() when line of 3 is executed

• print x

executing line of 3

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Function Calls and Recursive
Implementation

1 def f(x,y):
2 x += y
3 print x
4 return x
5
6 def main():
7 n = 4
8 out = f(n,2)
9 print out
10
11 main()

here records where f was called

when line of 4 is executed
• return x to the place (line of 8) where f was called

• out has value 4

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Function Calls and Recursive
Implementation

1 def f(x,y):
2 x += y
3 print x
4 return x
5
6 def main():
7 n = 4
8 out = f(n,2)
9 print out
10
11 main() line of 8 is where f was called, so this is the place

where f is supposed to be returned

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Function Calls and Recursive
Implementation

1 def f(x,y):
2 x += y
3 print x
4 return x
5
6 def main():
7 n = 4
8 out = f(n,2)
9 print out
10
11 main()

stack frame for f is
deallocated, because
f is complete

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Function Calls and Recursive
Implementation

1 def f(x,y):
2 x += y
3 print x
4 return x
5
6 def main():
7 n = 4
8 out = f(n,2)
9 print out
10
11 main()

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Function Calls and Recursive
Implementation

1 def f(x,y):
2 x += y
3 print x
4 return x
5
6 def main():
7 n = 4
8 out = f(n,2)
9 print out
10
11 main() when line of 9 is executed

• print out

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Function Calls and Recursive
Implementation

1 def f(x,y):
2 x += y
3 print x
4 return x
5
6 def main():
7 n = 4
8 out = f(n,2)
9 print out
10
11 main() after executing line of 9

• main is complete; the program is finished

stack frame for main is
deallocated, because
main is complete

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Function Calls and Recursive
Implementation

1 def f(x,y):
2 x += y
3 print x
4 return x
5
6 def main():
7 n = 4
8 out = f(n,2)
9 print out
10
11 main()

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Characterize the state of a function by a set of information
 an activation record or stack frame

 Every time a function is called,
 its activation record is created and placed on the run-time stack
 an activation record exists for as long as a function owning it is

executing
 private pool of info. for that function

 storing all info. necessary for function’s operation and how
to return to where it was called from

 short life span
 dynamically allocated at function entry
 dynamically deallocated upon exiting

Function Calls and Recursive
Implementation (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 The following information stored on the run-time stack:
 values of the function’s parameters, addresses of reference

variables (including arrays)
 copies of local variables
 the return address of the calling function
 a dynamic link to the calling function’s activation record
 the function’s return value if it is not void

Function Calls and Recursive
Implementation (cont.)

1 def f(x,y):
2 x += y
3 print x
4 return x

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Function Calls and Recursive
Implementation (cont.)

 A snapshot of run-time stack:
 always contain the current state of

the function

 e.g., main()  f1()  f2()  f3()

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Function Calls and Recursive
Implementation (cont.)

 A snapshot of run-time stack:
 always contain the current state of

the function

 e.g., main()  f1()  f2()  f3()

 Once f3() completes,
 its record is popped
 f2() can resume

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Function Calls and Recursive
Implementation (cont.)

 A snapshot of run-time stack:
 always contain the current state of

the function

 e.g., main()  f1()  f2()  f3()

 Once f2() completes,
 its record is popped
 f1() can resume

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Function Calls and Recursive
Implementation (cont.)

 A snapshot of run-time stack:
 always contain the current state of

the function

 e.g., main()  f1()  f2()  f3()

 Once f1() completes,
 its record is popped
 main() can resume

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Function Calls and Recursive
Implementation (cont.)

 A snapshot of run-time stack:
 always contain the current state of

the function

 e.g., main()  f1()  f2()  f3()

 Once main() completes,
 its record is popped
 program is finished

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Function Calls and Recursive
Implementation (cont.)

 A snapshot of run-time stack:
 always contain the current state of

the function

 e.g., main()  f1()  f2()  f3()

 Once f3() completes,
 its record is popped
 f2() can resume

 If f3() calls another function,
 the new function has its activation

record pushed onto the stack
 f3() is suspended

another
function

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 The use of activation records on the run-time stack
 allow recursion to be implemented and handled correctly

 When a function calls itself recursively,
 push a new activation record of itself on the stack
 suspend the calling instance of the function
 allow the new activation to carry on the process

 A recursive call
 create a series of activation records for different instances of the

same function

Function Calls and Recursive
Implementation (cont.)

	Recursion
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31

