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 Two parts of a recursive definition: 
 anchor or ground case (also sometimes called the base case) 

 establish the basis for all the other elements of the set
 inductive clause

 establish rules for the creation of new elements in the set

 For example, define the set of natural numbers:
1. 0    N (anchor)
2. if n N, then (n + 1)    N (inductive clause)
3. there are no other objects in the set N

 there may be other definitions

Recursive Definitions
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 Recursive definitions serve two purposes:
 generating new elements
 testing whether an element belongs to a set

 In the case of testing
 reducing the problem to an even simpler problem
 and so on
 until it is reduced to the anchor problem 

 E.g., is 23 a natural number?
 1 + 22,  1 + 1 + 21,  1 + 1 + 1 + 20, …

Recursive Definitions (cont.)

(you already have solution 
for anchor problem!!)
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 The recursive definition of the factorial function, !:

 So, 3! = 3 ∙ 2! = 3 ∙ 2 ∙ 1! = 3 ∙ 2 ∙ 1 ∙ 0! = 3 ∙ 2 ∙ 1 ∙ 1 = 6

 Find a formula that is equivalent to the recursive one without 
referring to previous values
 for factorials, we can use 
 frequently non-trivial and often quite difficult to achieve
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Recursive Definitions (cont.)

(anchor)

(inductive clause)

undesirable feature: to determine the value of current element (sn), we 
have to compute the values of all of the previous elements (s1, …, sn-1,)
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Recursive Definitions (cont.)

 From the standpoint of computer science, 
 recursion occurs frequently in language definitions as well as 

programming

 The translation from specification to code is fairly straightforward; 
 e.g., a factorial function in C++:

unsigned int factorial (unsigned int n){
if (n == 0)

return 1;
else return n * factorial (n – 1);

}

 Most modern programming languages incorporate mechanisms 
 support the use of recursion, making it transparent to the user
 recursion on computers are implemented using the run-time stack
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 What kind of information must we keep track of when a function 
is called?
 if the function has parameters??

 need to be initialized to their corresponding arguments
 where to resume the calling function once the called function is 

complete
 return address

 since functions can be called from other functions, 
 keep track of local variables for scope purposes

 don’t know in advance how many calls will occur, 
 stack, an efficient location to save information
 e.g., dynamic allocation using the run-time stack

Function Calls and Recursive 
Implementation



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Function Calls and Recursive 
Implementation

at the beginning, main is call
• create a new stack frame
• main has no parameters 

• stack frame is empty

1    def f(x,y):
2        x += y
3        print x
4        return x
5
6    def main():
7        n = 4
8        out = f(n,2)
9        print out
10
11    main()
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Function Calls and Recursive 
Implementation

at the beginning, main is call
• create a new stack frame
• main has no parameters 

• stack frame is empty

1    def f(x,y):
2        x += y
3        print x
4        return x
5
6    def main():
7        n = 4
8        out = f(n,2)
9        print out
10
11    main()
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Function Calls and Recursive 
Implementation

1    def f(x,y):
2        x += y
3        print x
4        return x
5
6    def main():
7        n = 4
8        out = f(n,2)
9        print out
10
11    main() when line of 7 of main is executed

• n is set to 4
• draw a box with a label and put content 

executing line of 7
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Function Calls and Recursive 
Implementation

1    def f(x,y):
2        x += y
3        print x
4        return x
5
6    def main():
7        n = 4
8        out = f(n,2)
9        print out
10
11    main() when line of 7 of main is executed

• n is set to 4
• draw a box with a label and put content 

executing line of 7



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Function Calls and Recursive 
Implementation

1    def f(x,y):
2        x += y
3        print x
4        return x
5
6    def main():
7        n = 4
8        out = f(n,2)
9        print out
10
11    main() when line of 8 of main is executed

• f is called
• first determine the value of arg, n

• n is 4; (2nd arg is 2)
• create a new stack frame containing arg values

executing line of 8
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Function Calls and Recursive 
Implementation

1    def f(x,y):
2        x += y
3        print x
4        return x
5
6    def main():
7        n = 4
8        out = f(n,2)
9        print out
10
11    main() when line of 8 of main is executed

• f is called
• first determine the value of arg, n

• n is 4; (2nd arg is 2)
• create a new stack frame containing arg values
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Function Calls and Recursive 
Implementation

1    def f(x,y):
2        x += y
3        print x
4        return x
5
6    def main():
7        n = 4
8        out = f(n,2)
9        print out
10
11    main() Note: 

• the stack frame for main is keeping track of 
where we were in that function
• when f is done, we will return to that line

executing line of 2
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Function Calls and Recursive 
Implementation

1    def f(x,y):
2        x += y
3        print x
4        return x
5
6    def main():
7        n = 4
8        out = f(n,2)
9        print out
10
11    main() when line of 2 is executed

• update x

executing line of 2
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Function Calls and Recursive 
Implementation

1    def f(x,y):
2        x += y
3        print x
4        return x
5
6    def main():
7        n = 4
8        out = f(n,2)
9        print out
10
11    main() when line of 3 is executed

• print x

executing line of 3
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Function Calls and Recursive 
Implementation

1    def f(x,y):
2        x += y
3        print x
4        return x
5
6    def main():
7        n = 4
8        out = f(n,2)
9        print out
10
11    main()

here records where f was called 

when line of 4 is executed
• return x to the place (line of 8) where f was called

• out has value 4
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Function Calls and Recursive 
Implementation

1    def f(x,y):
2        x += y
3        print x
4        return x
5
6    def main():
7        n = 4
8        out = f(n,2)
9        print out
10
11    main() line of 8 is where f was called, so this is the place 

where f is supposed to be returned
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Function Calls and Recursive 
Implementation

1    def f(x,y):
2        x += y
3        print x
4        return x
5
6    def main():
7        n = 4
8        out = f(n,2)
9        print out
10
11    main()

stack frame for f is 
deallocated, because 
f is complete 
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Function Calls and Recursive 
Implementation

1    def f(x,y):
2        x += y
3        print x
4        return x
5
6    def main():
7        n = 4
8        out = f(n,2)
9        print out
10
11    main()
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Function Calls and Recursive 
Implementation

1    def f(x,y):
2        x += y
3        print x
4        return x
5
6    def main():
7        n = 4
8        out = f(n,2)
9        print out
10
11    main() when line of 9 is executed

• print out
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Function Calls and Recursive 
Implementation

1    def f(x,y):
2        x += y
3        print x
4        return x
5
6    def main():
7        n = 4
8        out = f(n,2)
9        print out
10
11    main() after executing line of 9

• main is complete; the program is finished

stack frame for main is 
deallocated, because 
main is complete 
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Function Calls and Recursive 
Implementation

1    def f(x,y):
2        x += y
3        print x
4        return x
5
6    def main():
7        n = 4
8        out = f(n,2)
9        print out
10
11    main()
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 Characterize the state of a function by a set of information
 an activation record or stack frame

 Every time a function is called, 
 its activation record is created and placed on the run-time stack
 an activation record exists for as long as a function owning it is 

executing
 private pool of info. for that function

 storing all info. necessary for function’s operation and how 
to return to where it was called from

 short life span
 dynamically allocated at function entry
 dynamically deallocated upon exiting

Function Calls and Recursive 
Implementation (cont.)
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 The following information stored on the run-time stack:
 values of the function’s parameters, addresses of reference 

variables (including arrays)
 copies of local variables
 the return address of the calling function
 a dynamic link to the calling function’s activation record
 the function’s return value if it is not void

Function Calls and Recursive 
Implementation (cont.)

1    def f(x,y):
2        x += y
3        print x
4        return x
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Function Calls and Recursive 
Implementation (cont.)

 A snapshot of run-time stack: 
 always contain the current state of 

the function

 e.g., main()  f1()  f2()  f3()
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Function Calls and Recursive 
Implementation (cont.)

 A snapshot of run-time stack: 
 always contain the current state of 

the function

 e.g., main()  f1()  f2()  f3()

 Once f3() completes, 
 its record is popped
 f2() can resume
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Function Calls and Recursive 
Implementation (cont.)

 A snapshot of run-time stack: 
 always contain the current state of 

the function

 e.g., main()  f1()  f2()  f3()

 Once f2() completes, 
 its record is popped
 f1() can resume
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Function Calls and Recursive 
Implementation (cont.)

 A snapshot of run-time stack: 
 always contain the current state of 

the function

 e.g., main()  f1()  f2()  f3()

 Once f1() completes, 
 its record is popped
 main() can resume
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Function Calls and Recursive 
Implementation (cont.)

 A snapshot of run-time stack: 
 always contain the current state of 

the function

 e.g., main()  f1()  f2()  f3()

 Once main() completes, 
 its record is popped
 program is finished
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Function Calls and Recursive 
Implementation (cont.)

 A snapshot of run-time stack: 
 always contain the current state of 

the function

 e.g., main()  f1()  f2()  f3()

 Once f3() completes, 
 its record is popped
 f2() can resume

 If f3() calls another function, 
 the new function has its activation 

record pushed onto the stack 
 f3() is suspended

another 
function
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 The use of activation records on the run-time stack 
 allow recursion to be implemented and handled correctly

 When a function calls itself recursively, 
 push a new activation record of itself on the stack
 suspend the calling instance of the function
 allow the new activation to carry on the process

 A recursive call 
 create a series of activation records for different instances of the 

same function

Function Calls and Recursive 
Implementation (cont.)
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