
CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Recursion

Lecture 10

Instructor: Dr. Cong Pu, Ph.D.

cong.pu@okstate.edu

Adapted partially from Data Structures and Algorithms in Java, M. T. Goodrich, R. Tamassia and M. H.
Goldwasser, Sixth Edition, Wiley; Data Structures and Algorithms in C++, Adam Drozdek, 4th Edition,

Cengage Learning

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Analyze the recursive function and its behavior of recursion
 e.g., a number x to a non-negative integer power n:

/* 102 */ double power (double x, unsigned int n) {

/* 103 */ if (n == 0)

/* 104 */ return 1.0;

//else

/* 105 */ return x * power(x,n-1);

}

 e.g., the calculation of x4,
 x4 = x ∙ x3 = x ∙ (x ∙ x2) = x ∙ (x ∙ (x ∙ x1)) = x ∙ (x ∙ (x ∙ (x ∙ x0))) = x ∙ (x ∙

(x ∙ (x ∙ 1))) = x ∙ (x ∙ (x ∙ (x))) = x ∙ (x ∙ (x ∙ x)) = x ∙ (x ∙ x ∙ x) = x ∙ x ∙ x ∙ x
 repeated application of the inductive step leads to the anchor

1

1 if 0
if 0

n
n

n
x

x x n−

 =
=

⋅ >

Anatomy of a Recursive Call

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Produce the result of x0, which
is 1,
 return this value to the

previous call

 That call, which had been
pending,
 resume to calculate x ∙ 1,

producing x

 Each succeeding return then
takes the previous result
 use it in turn to produce the

final result

Anatomy of a Recursive Call (cont.)

The sequence of recursive calls and
returns,

call 1 x4 = x ∙ x3 = x ∙ x ∙ x ∙ x
call 2 x3 = x ∙ x2 = x ∙ x ∙ x
call 3 x2 = x ∙ x1 = x ∙ x
call 4 x1 = x ∙ x0 = x ∙ 1
call 5 x0 = 1

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Anatomy of a Recursive Call (cont.)

 Alternatively,

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 The system keeps track of a sequence of calls on the runtime stack,
 store the return address of the function call

 used to remember where to resume execution after the function has
completed

 e.g., power()is called by the following statement in main():
int main() {

 /* 136 * y = power(5.6,2);
...

}

/* 102 */ double power (double x, unsigned int n) {

/* 103 */ if (n == 0)

/* 104 */ return 1.0;

//else

/* 105 */ return x * power(x,n-1);

}

Anatomy of a Recursive Call (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Anatomy of a Recursive Call (cont.)

Changes to the run-time stack during
execution of power(5.6,2)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Anatomy of a Recursive Call (cont.)

Changes to the run-time stack during
execution of power(5.6,2)

2 != 0

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Anatomy of a Recursive Call (cont.)

Changes to the run-time stack during
execution of power(5.6,2)

2 != 0

1 != 0

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Anatomy of a Recursive Call (cont.)

Changes to the run-time stack during
execution of power(5.6,2)

1 != 0

0 = 0

2 != 0

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Anatomy of a Recursive Call (cont.)

Changes to the run-time stack during
execution of power(5.6,2)

0 = 0

1 != 0

2 != 0

no more calls

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Anatomy of a Recursive Call (cont.)

Changes to the run-time stack during
execution of power(5.6,2)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Anatomy of a Recursive Call (cont.)

Changes to the run-time stack during
execution of power(5.6,2)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Anatomy of a Recursive Call (cont.)

Changes to the run-time stack during
execution of power(5.6,2)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Anatomy of a Recursive Call (cont.)

Changes to the run-time stack during
execution of power(5.6,2)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Possible to implement the power() function in a non-recursive
manner??

double nonRecPower(double x, unsigned int n) {

double result = 1;

for (; n > 0; n--)

result *= x;

return result;

}

 comparing this to the recursive version,
 the recursive code is more intuitive, closer to the specification, and

simpler to code

Anatomy of a Recursive Call (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 The nature of a recursive definition
 the function contains a reference to itself
 this reference can take on a number of different forms

 Starting with the simplest, tail recursion
 a single recursive call occurs at the end of the function
 no other statements follow the recursive call
 no other recursive calls prior to the call at the end of the

function

Tail Recursion

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 e.g., a tail recursive function:

void tail(int i) { void nontail(int i) {

if (i > 0) { if (i > 0) {

cout << i << ‘’; nontail(i - 1);

tail(i-1); cout << i << ‘’;

} nontail(i - 1);

} }

}

 Tail recursion,
 a loop
 can be replaced by an iterative algorithm to accomplish the

same task

Tail Recursion (cont.)

not tail recursion!

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 e.g., an iterative form of the function:

void iterativeEquivalentOfTail(int i) {

for (; i > 0; i--)

cout << i << '';

}

 any advantage in using tail recursion over iteration??

Tail Recursion (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 e.g., another type of recursion:
/* 200 */ void reverse() {

char ch;

/* 201 */ cin.get(ch);

/* 202 */ if (ch != '\n') {

/* 203 */ reverse();
/* 204 */ cout.put(ch);

}

}

 the recursive call precedes other code in the function
 nontail recursion

 display a line of input in reverse order
 assuming the input, “ABC”

Nontail Recursion

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

/* 200 */ void reverse() {

char ch;

/* 201 */ cin.get(ch);

/* 202 */ if (ch != '\n') {

/* 203 */ reverse();
/* 204 */ cout.put(ch);

}

}

 The first time reverse() is called…
 an activation record is created to store the local variable ch

and the return address of the call in main()

Nontail Recursion (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Nontail Recursion (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Nontail Recursion (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Nontail Recursion (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 When the end of line character is read,
 the snapshot of stack appeared
 terminate the current call
 popping the last activation record off the stack
 resuming the previous call

Nontail Recursion (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 In solving some problems
 a situation arises where there are different ways leading from a given

position
 none of them known to lead to a solution

 after trying one path unsuccessfully
 return to the crossroads
 try to find the solution using another path

 ensure that a return is possible so that all paths can be tried
 Backtracking

 allows to systematically try all available paths from a certain point to
solve the problem after some of paths lead to nowhere

Backtracking

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Potential applications of backtracking
 artificial intelligence and optimization problems
 e.g., The Eight Queens Problem – no two queens share the same row,

column, or diagonal
 try to place eight queens on a chessboard (8 x 8) in such a way

 no two queens attack each other

Backtracking

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Place one queen at a time,
 trying to make sure that the queens do not attack each other

 If at any point a queen cannot be successfully placed,
 backtrack to the placement of the previous queen with different

position
 then, the next queen is tried again

 If no successful arrangement is found,
 backtracks further
 adjust the previous queen’s predecessor, etc.

Backtracking (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 This algorithm will find all solutions, although
some are symmetrical

Backtracking (cont.)

	Recursion
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28

