Binary Trees

Lecture | |

Instructor: Dr. Cong Pu, Ph.D.

cong.pu@okstate.edu

Adapted partially from Data Structures and Algorithms in Java, M.T. Goodrich, R. Tamassia and M. H.
Goldwasser, Sixth Edition, Wiley; Data Structures and Algorithms in C++,Adam Drozdek, 4th Edition,
Cengage Learning

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

Trees, Binary Trees, and
Binary Search Trees

= Limitations of linked lists, stacks, and queues,
= Linked lists:

Singly Linked List 5 — 10 ‘ —— 15 . _— 20 ><
= linear in form and cannot e
reflect hierarchically osymeaue | 2 | 7 [0 | I [| 2 [
organized data "o
. . . 5 10 15 .2
» Stacks and queues Ciradertotit - [1 1= [S
= one-dimensional structures and have limited expressiveness
FRONT REAR
TOP —» 3 l \L
‘; 94|36
7
5
STACK QUEUE

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

Trees, Binary Trees, and
Binary Search Trees (cont.)

= A new data structure, the tree,
= two components, nodes and arcs (or edges)
= the root at the top, and “grow” down
= the leaves of the tree (also called terminal nodes)

= at the bottom of the tree

O \
/ol \ root
(c)

(a) (b) /
(a) is an empty tree

« leaves
CS 3353: Data Structures and () (e) () (2)

Trees, Binary Trees, and
Binary Search Trees (cont.)

= Trees can be defined recursively,
I. A tree with no nodes or edges (an empty structure) is an empty tree

2. If we have a set t;, t, of disjoint trees, the structure whose root has as
its children the roots of t,;- t, is also a tree

3. Only structures generated by rules | and 2 are trees
= Every node in the tree must be accessible
= from the root through a unique sequence of edges,
= apath
= The number of edges in the path
= path’s length
= The length of the path from the root to that node plus |

= a node’s level (or the number of nodes in the path)

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

Trees, Binary Trees, and
Binary Search Trees (cont.)

= The maximum level of a node in a tree: the tree’s height
= An empty tree: height 0
= A tree of height |:a single node which is both the root and leaf
= The level of a node: must be between | and the tree’s height
A
(a) (b) (c)

(a) is an empty tree

CS 3353: Data Structures and (d) (e) (f) (2)

Trees, Binary Trees, and
Binary Search Trees (cont.)

= The number of children of a given node?

= can be arbitrary
= Using tree to represent hierarchy
= Using trees to improve the process of searching for elements??
A
(a) (b) (c)

(a) is an empty tree

CS 3353: Data Structures and (d) (e) (f) (2)

Trees, Binary Trees, and
Binary Search Trees (cont.)

= In order to find a particular element in a list of n elements,
= examine all nodes
= search from beginning to end
until the element is found
or reach the end of list
= if the list is ordered?
= Same idea: search from beginning to end
= E.g, 10,000 nodes and the last node is the target extremely

= all 9,999 of its predecessors have to be traversed inconvenient!
= If the elements of a list are stored in an orderly tree!?

m the number of elements that must be looked at can be reduced

= even when the target is the one farthest way

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

Trees, Binary Trees, and
Binary Search Trees (cont.)

= Linked list: search 31 eight tests needed

= no consideration of searching incorporated into design

2 > 10 > 12 > 13 > 20 > 25 > 29

Y

N

m [ree:search 31

= considerable savings in searching if a consistent ordering to the nodes
is applied Lme

\ .
elements are ordered / T \

from top to bottom, I g12) ! 13

10
from left to right. / ‘ \
20 23 29

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

\

.\
/‘ ™ .
| \
@D !

N -

Trees, Binary Trees, and
Binary Search Trees (cont.)

= A binary tree is a tree
= each node has only two children: the left child and the right child

= these children can be empty

/ \

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

Trees, Binary Trees, and
Binary Search Trees (cont.)

= In a binary search tree (or ordered binary tree),

= values stored in the left subtree of a given node n are less than the
value stored in node n

= values stored in the right subtree of a given node n are greater than
the value stored in node n

= the values stored are considered unique;

= attempts to store duplicate values can be treated as an error

K collar 13
A P caller color 10 23
/ \ \ A / \ / \
N R choler collier colour 2 . 20 31
o
29

CS 3353:Data S (a) (b) (C)

13
° ° / \
Implementing Binary Trees /10\ /25\
P 12 20 31

/

» Use arrays or linked structures to 29
implement binary trees (©)

Index Info Left Right

= [f using an array,
= an information field

= two “pointer” fields
containing the indexes of the
array locations of the left and
right children

= -|,an empty child
= The root of the tree
= always in the first cell of the
array

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

13
° ° / \
Implementing Binary Trees /10\ /25\
P 12 20 31

/
» Use arrays or linked structures to 29
implement binary trees (©) _
, Index Info Left _ Right
= [f using an array, -
. . 0 13 _ =714 2
= an information field ="
= two “pointer” fields 1«7 3k° 6 -1
containing the indexes of the P g 75 v 1
array locations of the leftand -
right children 3 12 -1 -1
= -l,an empty child 4 10 5 3
= The root of the tree 5 5 1 1
= always in the first cell of the
arra 6 29 -1 -1
Yy
7 20 -1 -1

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

Implementing Binary Trees (cont.)

13
= Drawbacks of binary tree arrays 10/ Y .
= need to keep track of the locations of each node, 2/ \12 20/ \ﬂ
= |ocation of children must be known to insert new node /‘
= deletion operation?? © &
= requiring tag to mark empty cells, Index Info Left Right
= moving elements around, or 0 = E 2
= requiring updating values . 31 6 -1
s Use a linked implementation 2 = 7 1
= an information data member & - -1 -1
= two pointer data members 4 10 5 3
5 2 ~1 -1
6 29 -1 ~1

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022 7 20 -1 -1

L
® [J /
Searching a Binary Search 4 \/25\
2 12 20 31

Tree
/

29

Locating a specific value in a binary tree: ©)
= compare the value to the target value; if match, the search is done

= If the target is smaller, branch to the left subtree
= If the target is larger, branch to the right subtree

= [f at any point we cannot proceed further,

= search has failed and the target isn’t in the tree

template<class T>
T* BST<T>::search(BSTNode<T>* p, const T& el) const {

while (p != O)N target
empty tree!

if (el == p->el) |
return &p-sel; compare target with node value

else if (el < p->el)
p = p->left;
else p = p->right;

target less than node value;
go to left branch; search

<
<

target larger than node value;
return O;)
go to right branch; search

CS 3353: Data Struct }

Searching a Binary Search Tree

(cont.) ~
10/ \25

Find the value 317 / \ / \
= only three comparisons g Y & /31
= Finding (or not finding) the values 26 — 30 29

. . C
= the maximum of four comparisons; (©)

= Allowing duplicates requires additional searches:
= If there is a duplicate,
= either locate the first occurrence and ignore the others, or
= locate each duplicate,

= search until no path contains another instance of the value

= This search will always terminate at a leaf node

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

Searching a Binary O,

Search Tree (cont.) 0 O 0 O

balanced binary tree

= The number of comparisons performed during the search
= determine the complexity of the search

= depend on the number of nodes encountered on the path from
the root to the target node

= The complexity??
= the length of the path plus |
= influenced by the shape of the tree and location of the target
= Searching in a binary tree
= quite efficient, even if it isn’t balanced (balanced binary tree)
= balanced binary tree: a binary tree in which the left and right

subtrees of every node differ in height by no more than |

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022 (d) (e)

	Binary Trees
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16

