Binary Trees

Lecture 11

Instructor: Dr. Cong Pu, Ph.D.

cong.pu@okstate.edu

Adapted partially from Data Structures and Algorithms in Java, M.T. Goodrich, R.Tamassia and M. H. Goldwasser, Sixth Edition, Wiley; Data Structures and Algorithms in C++, Adam Drozdek, 4th Edition, Cengage Learning

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Limitations of linked lists, stacks, and queues,

- Linked lists:
 - linear in form and cannot

reflect hierarchically organized data

- Stacks and queues
 - one-dimensional structures and have limited expressiveness

Singly Linked List

Doubly Linked List

Circular Linked List

5

head node

head node

10

10

10

15

15

15

20

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

- A new data structure, the tree,
 - two components, <u>nodes</u> and <u>arcs</u> (or <u>edges</u>)
 - the **root** at the top, and "grow" down
 - the *leaves* of the tree (also called *terminal nodes*)
 - at the bottom of the tree

- Trees can be defined recursively,
 - I. A tree with **no** nodes or edges (an *empty structure*) is an **empty tree**
 - 2. If we have a set $t_1 \cdots t_k$ of disjoint trees, the structure whose root has as its children the roots of $t_1 \cdots t_k$ is also a tree
 - 3. Only structures generated by rules I and 2 are trees
- Every node in the tree must be *accessible*
 - from the root through a unique sequence of edges,
 - a path
- The number of edges in the path
 - path's length
- The length of the path from the root to that node plus I
 - a node's level (or the number of nodes in the path)

- The maximum level of a node in a tree: the tree's height
- An empty tree: height 0
- A tree of **height I**: a single node which is both the **root** and **leaf**
- The level of a node: must be between I and the tree's height

- The number of children of a given node?
 - can be **arbitrary**
- Using tree to represent hierarchy
- Using trees to improve the process of searching for elements??

- In order to find a particular element in a list of *n* elements,
 - examine all nodes
 - search from beginning to end
 - until the element is found
 - or reach the end of list
 - if the list is ordered?
 - Same idea: search from beginning to end
 - E.g., 10,000 nodes and the last node is the target
 extremely
 - all 9,999 of its predecessors have to be traversed inconvenient!
- If the elements of a list are stored in an orderly tree??
 - the number of elements that must be looked at can be reduced
 - even when the target is the one farthest way

- Linked list: search 31 eight tests needed
 - no consideration of searching incorporated into design

- Tree: search 31
 - considerable savings in searching if a consistent ordering to the nodes is applied

elements are ordered from top to bottom, from left to right.

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

- A *binary tree* is a tree
 - each node has only **two children**: the **left child** and the **right child**
 - these children can be empty

- In a binary search tree (or ordered binary tree),
 - values stored in the left subtree of a given node n are less than the value stored in node n
 - values stored in the right subtree of a given node n are greater than the value stored in node n
 - the values stored are considered unique;
 - attempts to store duplicate values can be treated as an error

- implement binary trees
- If using an *array*,
 - an information field
 - two "pointer" fields containing the indexes of the array locations of the left and right children
 - -I, an empty child
- The root of the tree
 - always in the first cell of the array

		(C)		
Index	Info	Left	Right	

25

29

31

Implementing Binary Trees

- Use arrays or linked structures to implement binary trees
- If using an array,
 - an information field
 - two "pointer" fields containing the indexes of the array locations of the left and right children
 - -I, an empty child
- The root of the tree
 - always in the first cell of the array

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

13

10

25

Implementing Binary Trees (cont.)

_

			13	
Drawbacks of binary tree arrays			10	25
need to keep track of the locations of	f each r	node,	2 12	20 31
 location of children must be known to 	o insert	new node		
deletion operation??			(c)	29
requiring tag to mark empty cells,	Index	Info	Left	Right
 moving elements around, or 	0	13	4	2
 requiring updating values 	1	31	6	-1
Use a linked implementation	2	25	7	1
 an information data member 	3	12	-1	-1
two pointer data members	4	10	5	3
	5	2	-1	-1
	6	29	-1	-1
CS 3353: Data Structures and Algorithm Analysis I, Fall 2022	7	20	-1	-1

Searching a Binary Search Tree

Locating a specific value in a binary tree:

compare the value to the target value; if match, the search is done

13

(c)

10

12

2

25

29

31

20

- If the target is smaller, branch to the left subtree
- If the target is larger, branch to the right subtree
- If at any point we cannot proceed further,

```
search has failed and the target isn't in the tree
           template<class T>
           T* BST<T>::search(BSTNode<T>* p, const T& el) const {
                while (p != 0) -
                                             tree
                                                          target
                                              — empty tree?
                    if (el == p->el)
                          return &p->el;

    compare target with node value

                    else if (el < p->el) target less than node value;
                                                  go to left branch; search
                          p = p - > left;
                    else p = p->right;

    target larger than node value;

                return 0;
                                           go to right branch; search
CS 3353: Data Struct
```

Searching a Binary Search Tree (cont.)

- Find the value 31??
 - only three comparisons
- Finding (or not finding) the values 26 30
 - the maximum of four comparisons;
- Allowing duplicates requires additional searches:
 - If there is a duplicate,
 - either locate the first occurrence and ignore the others, or
 - locate each duplicate,
 - search until no path contains another instance of the value
- This search will always terminate at a leaf node

- The number of comparisons performed during the search
 - determine the complexity of the search
 - depend on the number of nodes encountered on the path from the root to the target node
- The complexity??
 - the length of the path plus I
 - influenced by the shape of the tree and location of the target
- Searching in a binary tree
 - quite efficient, even if it isn't balanced (balanced binary tree)
 - balanced binary tree: a binary tree in which the left and right subtrees of every node differ in height by no more than I

