
CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Binary Trees

Lecture 12

Instructor: Dr. Cong Pu, Ph.D.

cong.pu@okstate.edu

Adapted partially from Data Structures and Algorithms in Java, M. T. Goodrich, R. Tamassia and M. H.
Goldwasser, Sixth Edition, Wiley; Data Structures and Algorithms in C++, Adam Drozdek, 4th Edition,

Cengage Learning

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Tree traversal: the process of visiting each node in a tree data
structure exactly one time
 visiting nodes, but no visiting order specified
 numerous possible tree traversals
 e.g., in a tree of n nodes, there are n! traversals

 most of them are chaotic and no regularity
 two possible traversals

 2, 10, 12, 20, 13, 25, 29, 31
 lists even numbers and then odd numbers in

ascending order
 29, 31, 20, 12, 2, 25, 10, 13

 lists all nodes from level to level right to left, starting
from the lowest level up to the root

Tree Traversal

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Tree traversal: the process of visiting each node in a tree data
structure exactly one time
 visiting nodes, but no visiting order specified
 numerous possible tree traversals
 e.g., in a tree of n nodes, there are n! traversals

 most of them are chaotic and no regularity
 another possible traversal

 13, 31, 12, 2, 10, 29, 20, 25
 no regularity;
 random jumping from node to node

Tree Traversal

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Tree traversal: the process of visiting each node in a tree data
structure exactly one time
 visiting nodes, but no visiting order specified
 numerous possible tree traversals
 e.g., in a tree of n nodes, there are n! traversals

 most of them are chaotic and no regularity

 Two useful traversals
 depth-first traversals
 breadth-first traversals

Tree Traversal

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Breadth-First Traversal
 visit each node in the tree
 start from lowest (or highest) level and move down (or up) level by level

 on each level, visit node from left to right (or from right to left)
 one of four possible traversals

 e.g., 13, 10, 25, 2, 12, 20, 31, 29

 Implement using a queue; consider a top-down, left-to-right
breadth-first traversal
 start by placing the root node in the queue
 then remove the node at the front of the queue
 after visiting it, place its children (if any) at the end of the queue
 repeat until the queue is empty

Tree Traversal (cont.)

(top-down, left-to-right)

all nodes on level n must be visited
before visiting nodes on level n+1

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Breadth-First Traversal (continued)

Tree Traversal (cont.)

tree
empty tree?

enqueue root in queue

dequeue front node in queue

dequeued node has left child

still having node in queue

dequeued node has right child
enqueue left child

enqueue right child

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Breadth-First Traversal (continued)
 the queue-based breadth-first traversal

13

2510

12225

3120122

312012

3120

31

29

Queue

13

13, 10

13, 10, 25

13, 10, 25, 2

13, 10, 25, 2, 12

13, 10, 25, 2, 12, 20

13, 10, 25, 2, 12, 20, 31

13, 10, 25, 2, 12, 20, 31, 29

Output

The queue (middle) and output (right) from a breadth-first traversal of the tree from figure 6.6c (left).

Tree

Tree Traversal (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Breadth-First Traversal (continued)
 the queue-based breadth-first traversal

13

2510

12225

3120122

312012

3120

31

29

Queue

13

13, 10

13, 10, 25

13, 10, 25, 2

13, 10, 25, 2, 12

13, 10, 25, 2, 12, 20

13, 10, 25, 2, 12, 20, 31

13, 10, 25, 2, 12, 20, 31, 29

Output

The queue (middle) and output (right) from a breadth-first traversal of the tree from figure 6.6c (left).

Tree

Tree Traversal (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Breadth-First Traversal (continued)
 the queue-based breadth-first traversal

13

2510

12225

3120122

312012

3120

31

29

Queue

13

13, 10

13, 10, 25

13, 10, 25, 2

13, 10, 25, 2, 12

13, 10, 25, 2, 12, 20

13, 10, 25, 2, 12, 20, 31

13, 10, 25, 2, 12, 20, 31, 29

Output

The queue (middle) and output (right) from a breadth-first traversal of the tree from figure 6.6c (left).

Tree

Tree Traversal (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Breadth-First Traversal (continued)
 the queue-based breadth-first traversal

13

2510

12225

3120122

312012

3120

31

29

Queue

13

13, 10

13, 10, 25

13, 10, 25, 2

13, 10, 25, 2, 12

13, 10, 25, 2, 12, 20

13, 10, 25, 2, 12, 20, 31

13, 10, 25, 2, 12, 20, 31, 29

Output

The queue (middle) and output (right) from a breadth-first traversal of the tree from figure 6.6c (left).

Tree

Tree Traversal (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Breadth-First Traversal (continued)
 the queue-based breadth-first traversal

13

2510

12225

3120122

312012

3120

31

29

Queue

13

13, 10

13, 10, 25

13, 10, 25, 2

13, 10, 25, 2, 12

13, 10, 25, 2, 12, 20

13, 10, 25, 2, 12, 20, 31

13, 10, 25, 2, 12, 20, 31, 29

Output

The queue (middle) and output (right) from a breadth-first traversal of the tree from figure 6.6c (left).

Tree

Tree Traversal (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Breadth-First Traversal (continued)
 the queue-based breadth-first traversal

13

2510

12225

3120122

312012

3120

31

29

Queue

13

13, 10

13, 10, 25

13, 10, 25, 2

13, 10, 25, 2, 12

13, 10, 25, 2, 12, 20

13, 10, 25, 2, 12, 20, 31

13, 10, 25, 2, 12, 20, 31, 29

Output

The queue (middle) and output (right) from a breadth-first traversal of the tree from figure 6.6c (left).

Tree

Tree Traversal (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Breadth-First Traversal (continued)
 the queue-based breadth-first traversal

13

2510

12225

3120122

312012

3120

31

29

Queue

13

13, 10

13, 10, 25

13, 10, 25, 2

13, 10, 25, 2, 12

13, 10, 25, 2, 12, 20

13, 10, 25, 2, 12, 20, 31

13, 10, 25, 2, 12, 20, 31, 29

Output

The queue (middle) and output (right) from a breadth-first traversal of the tree from figure 6.6c (left).

Tree

Tree Traversal (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Breadth-First Traversal (continued)
 the queue-based breadth-first traversal

13

2510

12225

3120122

312012

3120

31

29

Queue

13

13, 10

13, 10, 25

13, 10, 25, 2

13, 10, 25, 2, 12

13, 10, 25, 2, 12, 20

13, 10, 25, 2, 12, 20, 31

13, 10, 25, 2, 12, 20, 31, 29

Output

The queue (middle) and output (right) from a breadth-first traversal of the tree from figure 6.6c (left).

Tree

Tree Traversal (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Breadth-First Traversal (continued)
 the queue-based breadth-first traversal

13

2510

12225

3120122

312012

3120

31

29

Queue

13

13, 10

13, 10, 25

13, 10, 25, 2

13, 10, 25, 2, 12

13, 10, 25, 2, 12, 20

13, 10, 25, 2, 12, 20, 31

13, 10, 25, 2, 12, 20, 31, 29

Output

The queue (middle) and output (right) from a breadth-first traversal of the tree from figure 6.6c (left).

Tree

Tree Traversal (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Breadth-First Traversal (continued)
 the queue-based breadth-first traversal

13

2510

12225

3120122

312012

3120

31

29

Queue

13

13, 10

13, 10, 25

13, 10, 25, 2

13, 10, 25, 2, 12

13, 10, 25, 2, 12, 20

13, 10, 25, 2, 12, 20, 31

13, 10, 25, 2, 12, 20, 31, 29

Output

The queue (middle) and output (right) from a breadth-first traversal of the tree from figure 6.6c (left).

Tree

Tree Traversal (cont.)

(empty queue!)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Depth-First Traversal
 proceed by following left- (or right-) hand branches as far as

possible
 backtrack to the most recent crossroad and take the right- (or

left-) hand branch to the next node
 follow branches to the left (or right) again as far as possible
 continue until all nodes have been visited

 Three activities:
 traversing to the left subtree (L)
 traversing to the right subtree (R)
 visiting a node (V)

Tree Traversal (cont.)

(when are nodes visited?? before proceeding down or after backing up??)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Three activities:
 traversing to the left subtree (L)
 traversing to the right subtree (R)
 visiting a node (V)

 An orderly traversal: the tasks are performed in the same order
for each node

 Six possible ordered depth-first traversals

Tree Traversal (cont.)

VLR VRL LVR RVL LRV RLV

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Depth-First Traversal
(continued)
 follow the convention of

traversing from left to right:
 VLR – known as preorder

traversal
 LVR – known as inorder

traversal
 LRV – known as postorder

traversal

Tree Traversal (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Depth-First Traversal (continued)
 the recursion supported by the run-time stack

 simplifying coding but, laying a heavy burden on the system
 e.g., the inorder traversal

 traverse the left subtree of the node, then visit the node, then
traverse the right subtree

Tree Traversal (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Depth-First Traversal (continued) – L V R

Tree Traversal (cont.)

the stack remembers the
backtrack point, then visit
the branch point node, and
proceed to the right

the V and R steps are
held pending until the
L step completes

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Tree Traversal (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Searching a binary tree
 does not modify the tree

 Tree traversals can change the tree
 depending on visit()
 operations like insertions, deletions, modifying values, etc.

 alter the tree structure

Insertion

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Insert a new node in a binary tree??
 perform in the same way as searching
 compare the value of the node to be inserted to the current node
 if the value to be inserted is smaller,

 follow the left subtree;
 if it is larger,

 follow the right subtree;
 if the child branch we are to follow is empty,

 stop the search and insert the new node as that child
 E.g., insert node 30

Insertion

30

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Insertion (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Search

 Finding the smallest or largest node

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 A complex operation depending on the placement of the node to
be deleted in the tree
 more children a node has, more complex the deletion process

 Three cases of deletion that need to be handled:
 deleting a node that has no children
 deleting a node with one child
 deleting a node with two children

Deletion

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 deleting a node that has no children (e.g., delete 78)

Deletion

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 deleting a node with one child (e.g., delete 54)

Deletion

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 deleting a node with two children (e.g., delete 56)

Deletion

Find the largest value in the left subtree

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 deleting a node with two children (e.g., delete 56) (cont.)

Deletion

Find the smallest value in the right subtree

	Binary Trees
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31

