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 Finding the shortest path between two nodes, 
 the edges of the graph associated with values, e.g., distance, time, 

costs, amounts, etc.

 Dijkstra’s algorithm, 
 find the shortest path between source node and every other 

node
 if the path is longer than any other path from that point, it is 

dropped, and the other path is expanded
 each vertex is visited, the new paths are started, and the vertex is 

then not used anymore
 once all the vertices are visited, the algorithm is done

Shortest Paths: 
Dijkstra Algorithm
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Dijkstra AlgorithmDijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest 

path to v
Q: set of vertices
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for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices
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u = y

\

v = z
alt = 5 + 2 = 7 < ∞

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices
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v = z
alt = 5 + 2 = 7 < ∞

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices
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Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices
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Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices
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Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices
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Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices
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Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices
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alt = 7 + 7 = 14

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices
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alt = 7 + 7 = 14 > 0

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices
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u = z
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Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices
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alt = 7 + 6 = 13

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices
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alt = 7 + 6 = 13 < 14

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices
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alt = 7 + 6 = 13 < 14

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices
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Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices
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Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices
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Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices
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u = t

\

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

8

5 7

13

Q:[s, t, y, x, z]\ \ \
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Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices
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alt = 8 + 2 = 10

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices
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alt = 8 + 2 = 10 > 5

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices
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Q:[s, t, y, x, z]\ \ \
u = t
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Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices
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v = x
alt = 8 + 1 = 9

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices
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Q:[s, t, y, x, z]\ \ \
u = t

\

v = x
alt = 8 + 1 = 9 < 13

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices
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u = t
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v = x
alt = 8 + 1 = 9 < 13

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices
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Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices
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Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices
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Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices
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