
CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Graphs

Lecture 17

Instructor: Dr. Cong Pu, Ph.D.

cong.pu@okstate.edu

Adapted partially from Data Structures and Algorithms in Java, M. T. Goodrich, R. Tamassia and M. H. 
Goldwasser, Sixth Edition, Wiley; Data Structures and Algorithms in C++, Adam Drozdek, 4th Edition, 

Cengage Learning



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Finding the shortest path between two nodes, 
 the edges of the graph associated with values, e.g., distance, time, 

costs, amounts, etc.

 Dijkstra’s algorithm, 
 find the shortest path between source node and every other 

node
 if the path is longer than any other path from that point, it is 

dropped, and the other path is expanded
 each vertex is visited, the new paths are started, and the vertex is 

then not used anymore
 once all the vertices are visited, the algorithm is done

Shortest Paths: 
Dijkstra Algorithm



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra AlgorithmDijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest 

path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

∞

∞

∞ ∞

∞

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

∞

∞

∞ ∞

∞

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

∞

∞ ∞

∞

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

∞

∞ ∞

∞

Q:[s, t, y, x, z]

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

∞

∞ ∞

∞

Q:[s, t, y, x, z]

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

∞

∞ ∞

∞

Q:[s, t, y, x, z]

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

∞

∞ ∞

∞

Q:[s, t, y, x, z]

u = s

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

∞

∞ ∞

∞

Q:[s, t, y, x, z]

u = s

\

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

∞

∞ ∞

∞

Q:[s, t, y, x, z]

u = s

\

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

∞

∞ ∞

∞

Q:[s, t, y, x, z]

u = s

\

v = t
alt = 0 + 10 = 10

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

∞

∞ ∞

∞

Q:[s, t, y, x, z]

u = s

\

v = t
alt = 0 + 10 = 10 < ∞

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

10

∞ ∞

∞

Q:[s, t, y, x, z]

u = s

\

v = t
alt = 0 + 10 = 10 < ∞

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

10

∞ ∞

∞

Q:[s, t, y, x, z]

u = s

\

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

10

∞ ∞

∞

Q:[s, t, y, x, z]

u = s

\

v = y
alt = 0 + 5 = 5

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

10

∞ ∞

∞

Q:[s, t, y, x, z]

u = s

\

v = y
alt = 0 + 5 = 5 < ∞

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

10

5 ∞

∞

Q:[s, t, y, x, z]

u = s

\

v = y
alt = 0 + 5 = 5 < ∞

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

10

5 ∞

∞

Q:[s, t, y, x, z]\

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

10

5 ∞

∞

Q:[s, t, y, x, z]\

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

10

5 ∞

∞

Q:[s, t, y, x, z]\
u = y

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

10

5 ∞

∞

Q:[s, t, y, x, z]\
u = y

\

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

10

5 ∞

∞

Q:[s, t, y, x, z]\
u = y

\

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

10

5 ∞

∞

Q:[s, t, y, x, z]\
u = y

\

v = t
alt = 5 + 3 = 8

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

10

5 ∞

∞

Q:[s, t, y, x, z]\
u = y

\

v = t
alt = 5 + 3 = 8 < 10

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

8

5 ∞

∞

Q:[s, t, y, x, z]\
u = y

\

v = t
alt = 5 + 3 = 8 < 10

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

8

5 ∞

∞

Q:[s, t, y, x, z]\
u = y

\

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

8

5 ∞

∞

Q:[s, t, y, x, z]\
u = y

\

v = x
alt = 5 + 9 = 14

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

8

5 ∞

∞

Q:[s, t, y, x, z]\
u = y

\

v = x
alt = 5 + 9 = 14 < ∞

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

8

5 ∞

14

Q:[s, t, y, x, z]\
u = y

\

v = x
alt = 5 + 9 = 14 < ∞

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

8

5 ∞

14

Q:[s, t, y, x, z]\
u = y

\

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

8

5 ∞

14

Q:[s, t, y, x, z]\
u = y

\

v = z
alt = 5 + 2 = 7

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

8

5 ∞

14

Q:[s, t, y, x, z]\
u = y

\

v = z
alt = 5 + 2 = 7 < ∞

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

8

5 7

14

Q:[s, t, y, x, z]\
u = y

\

v = z
alt = 5 + 2 = 7 < ∞

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

8

5 7

14

Q:[s, t, y, x, z]\ \

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

8

5 7

14

Q:[s, t, y, x, z]\ \

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

8

5 7

14

Q:[s, t, y, x, z]\ \
u = z

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

8

5 7

14

Q:[s, t, y, x, z]\ \
u = z

\

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

8

5 7

14

Q:[s, t, y, x, z]\ \
u = z

\

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

8

5 7

14

Q:[s, t, y, x, z]\ \
u = z

\

v = s
alt = 7 + 7 = 14

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

8

5 7

14

Q:[s, t, y, x, z]\ \
u = z

\

v = s
alt = 7 + 7 = 14 > 0

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

8

5 7

14

Q:[s, t, y, x, z]\ \
u = z

\

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

8

5 7

14

Q:[s, t, y, x, z]\ \
u = z

\

v = x
alt = 7 + 6 = 13

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

8

5 7

14

Q:[s, t, y, x, z]\ \
u = z

\

v = x
alt = 7 + 6 = 13 < 14

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

8

5 7

13

Q:[s, t, y, x, z]\ \
u = z

\

v = x
alt = 7 + 6 = 13 < 14

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

8

5 7

13

Q:[s, t, y, x, z]\ \ \

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

8

5 7

13

Q:[s, t, y, x, z]\ \ \

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

8

5 7

13

Q:[s, t, y, x, z]\ \ \
u = t

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

8

5 7

13

Q:[s, t, y, x, z]\ \ \
u = t

\

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

8

5 7

13

Q:[s, t, y, x, z]\ \ \
u = t

\

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

8

5 7

13

Q:[s, t, y, x, z]\ \ \
u = t

\

v = y
alt = 8 + 2 = 10

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

8

5 7

13

Q:[s, t, y, x, z]\ \ \
u = t

\

v = y
alt = 8 + 2 = 10 > 5

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

8

5 7

13

Q:[s, t, y, x, z]\ \ \
u = t

\

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

8

5 7

13

Q:[s, t, y, x, z]\ \ \
u = t

\

v = x
alt = 8 + 1 = 9

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

8

5 7

13

Q:[s, t, y, x, z]\ \ \
u = t

\

v = x
alt = 8 + 1 = 9 < 13

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

8

5 7

9

Q:[s, t, y, x, z]\ \ \
u = t

\

v = x
alt = 8 + 1 = 9 < 13

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

8

5 7

9

Q:[s, t, y, x, z]\ \ \
u = x

\ \

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

8

5 7

9

Q:[s, t, y, x, z]\ \ \
u = x

\ \

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices



CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Dijkstra Algorithm

10

5

2 3

7

9

1

2

4 6s

y

t x

z

0

8

5 7

9

Dijkstra (G, s)
for each vertex v in G

dist[v] = ∞
previous[v] = Undefined

dist[s] = 0
Q = G.V
while Q is not empty

u = node in Q with smallest dist[]
remove u from Q
for each neighbor v of u

alt = dist[u] + dist_between(u, v)
if alt < dist[v]

dist[v] = alt
previous[v] = u

return previous[] 

dist[v]: shortest distance from s to v
previous[v]: previous vertex in shortest path to v
Q: set of vertices


	Graphs
	Slide Number 2
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm
	Dijkstra Algorithm

