Sorting

Lecture 20
Instructor: Dr. Cong Pu, Ph.D.

cong.pu@okstate.edu

Adapted partially from Data Structures and Algorithms in Java, M.T. Goodrich, R.Tamassia and M. H.
Goldwasser, Sixth Edition, Wiley; Data Structures and Algorithms in C++,Adam Drozdek, 4th Edition,
Cengage Learning
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Efficient Sorting Algorithms:
Heap Sort

= Motivation of heap sort
= selection sort, fairly inefficient, O(n2)

= recall: selection sort finds the smallest element in the list and places
it first, then the next smallest, etc.
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= relatively few moves of the data; many comparisons
= if the comparison portion of the sort can be improved!?

= performance can likewise be improved
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Efficient Sorting Algorithms:
Heap Sort

= A heap, a special type of binary tree

= the value of each node is greater than or equal to the values
stored in its children

= the tree is perfectly balanced, and the leaves in the last level are
leftmost in the tree
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Efficient Sorting Algorithms:
Heap Sort

= Different heaps constructed with the same elements [0 1 27 89 10]
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Efficient Sorting Algorithms:
Heap Sort

= Heap sort
= have the array sorted in ascending order
= place the first largest element at the end of array;

= then put the second largest element in front of the first largest
element;

" ...
= etc.
= Differences between heap sort and selection sort
= heap sort: the largest element; the end of array
= selection sort: the smallest element; the beginning of array

= result is same
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Efficient Sorting Algorithms:
Heap Sort

= [wo phases of heap sort
= [t phase: build a heap out of the data set
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Efficient Sorting Algorithms:
Heap Sort

= [wo phases of heap sort
= [t phase: build a heap out of the data set
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Efficient Sorting Algorithms:
Heap Sort

= [wo phases of heap sort
= [stphase: build a heap out of the data set heap
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* the value of each node is greater than or equal to the values stored in its children
e the tree is perfectly balanced, and the leaves in the last level are leftmost in the tree
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Efficient Sorting Algorithms:
Heap Sort

= [wo phases of heap sort

= 2" phase: find the largest item from the heap and move it to the end of

’a-trr?y violating heap property!restore .
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Efficient Sorting Algorithms:
Heap Sort

= [wo phases of heap sort

= 2" phase: find the largest item from the heap and move it to the end of

arrey . violating heap property! restore
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Efficient Sorting Algorithms:
Heap Sort

= [wo phases of heap sort

= 2" phase: find the largest item from the heap and move it to the end of
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Efficient Sorting Algorithms:
Heap Sort

= Implementation of heapsort()

template<class T>
void heapsort (T datal[], int n) {
for (int i = n/2 - 1; 1 >= 0; --1) // create a heap;
moveDown (data,i,n-1);
for (int 1 = n-1; 1 >= 1; --1) {
swap (data[0] ,data[i]); // movethelargestitemto datal[il];

moveDown (data,0,1-1); // restore the heap property;

= code for swap () and moveDown () can be found on Canvas
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Efficient Sorting Algorithms:
Merge Sort

= Merge sort
= three major operations:

» divide === this process stops when the subarray has one element

partition the n-element array to be sorted into two sub-
array of n/2 elements

= conquer
sort the two sub-arrays recursively
= combine

merge the two sorted sub-arrays of size n/2 to produce
the sorted array of n elements
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Efficient Sorting Algorithms:

Merge Sort (cont.)

= e.g,sort the array using merge sort
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Efficient Sorting Algorithms:
Merge Sort (cont.)

= e.g, sort the array using merge sort (cont.)
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index pointing the first index pointing the first

element in the first subarray| element in the second subarray

the last element in
the first subarray
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Efficient Sorting Algorithms:

Merge Sort (cont.) when | > MID than copy the

remaining elements of the
right sub-array in TEMP

= e.g,sort the array using merge sort (cont.)

9 39 45 81 18 27 72 ag | 9 18
BEG I MID ] END INDEX
g 39 45 21 18 27 72 90 | =) 18 27
BEG  § MID ] END INDEX
= 39 45 81 18 27 72 90 9 18 27 39
BEG I MID J END INDEX
) 39 45 81 18 27 12 S0 3 18 27 35 45
BEG o L MID ] END INDEX
L2 39 45 81 18 27 72 S0 9 18 27 39 | 45 72
BEG I, MID J END INDEX
9 g | 45 21 18 27 72 90 9 18 217 39 45 7a 81
BEG I, MID J END INDEX
g 39 45 21 13 27 12 50 | - 18 27 39 45 72 81 90
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Efficient Sorting Algorithms:
Merge Sort (cont.)

mergesort (datal])
if data have at least two elements
mergesort (left half of data) ;
mergesort(r%ﬁthaﬁ%ﬁ‘data);:
merge (both halves into a sorted list) ;

< stop when subarray has one item

keep dividing left half
keep dividing right half

merge (arrayl[], array2[], array3[])
i1, 12, i3 are properly initialized;
while both array2 and array3 contain elements
if array2[i2] < array3[i3]
arrayl[il++] = array2[i2++];
else arrayl [il++] array3 [13++] ;
load into arrayl the remaining elements of either array2 or array3;

= Key operations
= merge the sorted halves of the array into a single array

= these halves must be sorted, which occurs by merging the sorted
halves of these halves
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Efficient Sorting Algorithms:
Merge Sort (cont.)
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= eg,thearray [ 864 105 3 2 22]
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= Drawback of merge sort? N N
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i ITLE Course Observation

= Scan the following QR code

= Or visit https://forms.office.com/r/pd2dCBkJew
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