Sorting

Lecture 20
Instructor: Dr. Cong Pu, Ph.D.

cong.pu@okstate.edu

Adapted partially from Data Structures and Algorithms in Java, M.T. Goodrich, R.Tamassia and M. H.
Goldwasser, Sixth Edition, Wiley; Data Structures and Algorithms in C++,Adam Drozdek, 4th Edition,
Cengage Learning

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

Efficient Sorting Algorithms:
Heap Sort

= Motivation of heap sort
= selection sort, fairly inefficient, O(n2)

= recall: selection sort finds the smallest element in the list and places
it first, then the next smallest, etc.

unsorted set

A
< -
X y y4 \.
g 7
Z] I
e | \putithere |
x<y<z find smallest element among unsorted set !

= relatively few moves of the data; many comparisons
= if the comparison portion of the sort can be improved!?

= performance can likewise be improved

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

Efficient Sorting Algorithms:
Heap Sort

= A heap, a special type of binary tree

= the value of each node is greater than or equal to the values
stored in its children

= the tree is perfectly balanced, and the leaves in the last level are
leftmost in the tree

15

10
/ 3/ \? £

6 10 1z
/ \ /
2 3 f
@ Heaps
6 10 12 i 10
/ N & \ 2l
15 J 7 10 21 15 8 i}
& / [\ A\
B 3 6 2 4 i
® Non-heaps © Non-heaps

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

Efficient Sorting Algorithms:
Heap Sort

= Different heaps constructed with the same elements [0 1 27 89 10]
10 10 10
e e N
i 9 9 h 7 9
/N Ly /N 7o /N /N
1 0 8 1 i 2 0 | 0 | . 8
(a) (b) (c)

Yo S

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

Efficient Sorting Algorithms:
Heap Sort

= Heap sort
= have the array sorted in ascending order
= place the first largest element at the end of array;

= then put the second largest element in front of the first largest
element;

" ...
= etc.
= Differences between heap sort and selection sort
= heap sort: the largest element; the end of array
= selection sort: the smallest element; the beginning of array

= result is same

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

Efficient Sorting Algorithms:
Heap Sort

= [wo phases of heap sort
= [t phase: build a heap out of the data set

1St
2 2
ZnV \ / \ / \
Swap Swap 8 15
M/\W@V\W /\ f?\ /N /N
swap 1 10 15 10 3 12 10 6 3
/\ /\ /\
gth 12 11 oth 11 | 11
2181611011513 112]11 21816 (12110115131 1111 218 (15121016 (31|11
(a)SVaP SV swap ()

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

Efficient Sorting Algorithms:
Heap Sort

= [wo phases of heap sort
= [t phase: build a heap out of the data set

2 2 swa
12/ \1’3 / Q p

- 12 15
/ \ / \ / \ / \
3 10 6 3 11 10 6 3
AN /\
| 11 | 3
211211518106 |31 |11 2 112(15)111(10{6 |3 |18
N~ @7 T
(d) Swap swap (e)

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

Efficient Sorting Algorithms:
Heap Sort

= [wo phases of heap sort
= [stphase: build a heap out of the data set heap

/\ /\

/\Swap('/\ /\ VAN
10 2 3
/\ /N
| 8
15(121 211111016 131118 I5(1216 (1110121318
Tawn
(Ff)) (2)

* the value of each node is greater than or equal to the values stored in its children
e the tree is perfectly balanced, and the leaves in the last level are leftmost in the tree

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

Efficient Sorting Algorithms:
Heap Sort

= [wo phases of heap sort

= 2" phase: find the largest item from the heap and move it to the end of

’a-trr?y violating heap property!restore .
{' 15, , largest ‘ largest
/ \ / \
2 3

/\

1511216 |11{10]2 3|18

(a) taken taken

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

Efficient Sorting Algorithms:
Heap Sort

= [wo phases of heap sort

= 2" phase: find the largest item from the heap and move it to the end of

arrey . violating heap property! restore
1 ¢ ; largest
/ \ S, _.-"
11 6
/ \ / \
8 10 2 3
:I’ \\.
12 15
1] e]s]i0]2]3 112115
@ taken

violating heap property!restore
CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

Efficient Sorting Algorithms:
Heap Sort

= [wo phases of heap sort

= 2" phase: find the largest item from the heap and move it to the end of

arra o
4 violating heap property!restore

-
.

r 10 \; largest
8 6
/ \ /N
3 1 2

L AY
/N

12 15

11

olslel3l1]2111112115

I
I L1 _ .

(&hllen

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

Efficient Sorting Algorithms:
Heap Sort

= Implementation of heapsort()

template<class T>
void heapsort (T datal[], int n) {
for (int i = n/2 - 1; 1 >= 0; --1) // create a heap;
moveDown (data,i,n-1);
for (int 1 = n-1; 1 >= 1; --1) {
swap (data[0] ,data[i]); // movethelargestitemto datal[il];

moveDown (data,0,1-1); // restore the heap property;

= code for swap () and moveDown () can be found on Canvas

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

Efficient Sorting Algorithms:
Merge Sort

= Merge sort
= three major operations:

» divide === this process stops when the subarray has one element

partition the n-element array to be sorted into two sub-
array of n/2 elements

= conquer
sort the two sub-arrays recursively
= combine

merge the two sorted sub-arrays of size n/2 to produce
the sorted array of n elements

Yo G

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

Efficient Sorting Algorithms:

Merge Sort (cont.)

= e.g,sort the array using merge sort

39

81

45

27

721

18 |

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

Hile

81

45 |0 lf27]l 72| 28

(Combine the elements to form a sorted array)

Yo G

Efficient Sorting Algorithms:
Merge Sort (cont.)

= e.g, sort the array using merge sort (cont.)

1 y , J—_—
9 -39 45 81 1% 27 72 90|
L *
TEMP
"9 135 a5 ei1s iy 2l 0| 9
BEG, I MID 3 END INDEX
index pointing the first index pointing the first

element in the first subarray| element in the second subarray

the last element in
the first subarray

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

Efficient Sorting Algorithms:

Merge Sort (cont.) when | > MID than copy the

remaining elements of the
right sub-array in TEMP

= e.g,sort the array using merge sort (cont.)

9 39 45 81 18 27 72 ag | 9 18
BEG I MID] END INDEX
g 39 45 21 18 27 72 90 | =) 18 27
BEG § MID] END INDEX
= 39 45 81 18 27 72 90 9 18 27 39
BEG I MID J END INDEX
) 39 45 81 18 27 12 S0 3 18 27 35 45
BEG o L MID] END INDEX
L2 39 45 81 18 27 72 S0 9 18 27 39 | 45 72
BEG I, MID J END INDEX
9 g | 45 21 18 27 72 90 9 18 217 39 45 7a 81
BEG I, MID J END INDEX
g 39 45 21 13 27 12 50 | - 18 27 39 45 72 81 90

CS 3353:Data s °F° MiD: 1 J END INDEX

Efficient Sorting Algorithms:
Merge Sort (cont.)

mergesort (datal])
if data have at least two elements
mergesort (left half of data) ;
mergesort(r%ﬁthaﬁ%ﬁ‘data);:
merge (both halves into a sorted list) ;

< stop when subarray has one item

keep dividing left half
keep dividing right half

merge (arrayl[], array2[], array3[])
i1, 12, i3 are properly initialized;
while both array2 and array3 contain elements
if array2[i2] < array3[i3]
arrayl[il++] = array2[i2++];
else arrayl [il++] array3 [13++] ;
load into arrayl the remaining elements of either array2 or array3;

= Key operations
= merge the sorted halves of the array into a single array

= these halves must be sorted, which occurs by merging the sorted
halves of these halves

Yo G

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022

Efficient Sorting Algorithms:
Merge Sort (cont.)

. 1 8 6 4105 3 2 22
= eg,thearray [864 105 3 2 22]
sorted by merge sort . 8 6 4{ \M\ﬁ T 0
= Drawback of merge sort? N N
. 1 8 6 410 5 3 2 2
= additional storage for 7, VAR VAR VAR
merging array I8 6 41 10 5 - 2 22
A T VT]
< \ \ | |
1 8 f \III III'II II'II f \I I{rllll
N\ | \/ \J
1 6 8 410 35 2 2
kbbb N
1 [1 46 810 23 5 22 |
L ey ;,.r:”______'

1 2 3 4 5 6 8 1022

CS 3353: Data Structures and Algorithm Analysis |, Fall 2(

i ITLE Course Observation

= Scan the following QR code

= Or visit https://forms.office.com/r/pd2dCBkJew

CS 3353: Data Structures and Algorithm Analysis |, Fall 2022 —

	Sorting
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19

