
CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

Hashing

Lecture 21

Instructor: Dr. Cong Pu, Ph.D.

cong.pu@okstate.edu

Adapted partially from Data Structures and Algorithms in Java, M. T. Goodrich, R. Tamassia and M. H.
Goldwasser, Sixth Edition, Wiley; Data Structures and Algorithms in C++, Adam Drozdek, 4th Edition,

Cengage Learning

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Main operations used by searching??
 comparing keys

 e.g., In sequential search
 search the table (or array) storing the elements in order
 key comparison determines a match

 e.g., In binary search
 the table (or array) storing the elements is divided into halves
 determine which half to check
 key comparison determines a match

 A different way to search??
 calculate the position of the key in the table based on the value of key

Introduction

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 A different way to search?
 calculate the position of the key in the table based on the value of key
 the value of key indicates the position

 when the key is known, the position can be accessed directly
 no other preliminary tests
 search time:

 regardless of the number of elements being searched
 the run time is same

Introduction

O(1)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 For example
 a small company of 100 employees, assigned an employ id in the range

of 0 – 99
 employ id  index into the array (or table)
 directly access the record of any employee, if employ id is known

Introduction (cont.)

Employee Tablemapping

mapping

mapping

mapping

mapping

2-digit key 100 entries

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 For example (cont.)
 what if, five-digit employ id used as the primary key?
 key value ranging from 00000 to 99999  100,000 array size

 actually there are only 100 employees in the company
 just use last two digits of the key to identify each employee

Introduction (cont.)

Employee Table
100,000 entries

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 For example (cont.), need to use five-digit employee id
 convert a five-digit key number to a two-digit array index?

 need a specific function…
 e.g., Emp_ID 79439  index 39
 e.g., Emp_ID 12345  index 45

 Terminologies
 hash table  an array
 hash function  carry out the transformation

 Hash function, h
 transform a key (e.g., string, number, record, or the like), K, into an index

for a table used to store items of the same type as K

 Perfect hash function, h
 h transforms different keys into different indexes

Introduction (cont.)

Our goal!

hash tablehash function

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Hash table: a data structure where
 keys are mapped to array positions (index) by a hash function

 For example, a direct correspondence between the keys and the
indices of the array
 useful when the total universe of keys is small
 useful when most of the keys are used from the whole set of keys

Hash Tables

storage requirement for a
hash table, O(k), k is the

number of keys actually used

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Hashing
 process of mapping the keys to appropriate locations (or indices) in

a hash table
 e.g., an element with key k stored at index h(k) , NOT k

 use a hash function h

Hash Tables (cont.)

storage requirement for a
hash table, O(k), k is the

number of keys actually used

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Collision
 two or more keys map to the same location

 e.g., k2 and k6 point to the same location
 e.g., k5 and k7 point to the same location

Hash Tables
(cont.)

collision

collision

direct correspondence

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 A mathematical formula
 apply to a key (numeric or alphanumeric (i.e., ASCII)), and
 produce an integer used as an index for the key in the hash table
 ideally produce a unique set of integers to reduce the number of

collisions
 A good hash function?

 minimize the number of collisions by spreading the elements
uniformly throughout the array

 uniformity – map the keys as evenly as possible over output range
 minimize the number of collisions

 low cost – the cost of executing a hash function
 determinism – the same hash value must be generated for a given

same input value

Hash Functions

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 The number that a hash function returns should be a valid index of
the table

 Division modulo
 h(x) = x mod T_size,

 where T_size = sizeof(table)
 it is a best choice if T_size is a prime number

 e.g., T_size = 7 (prime number)
 remainder: 0, 1, 2, 3, 4, 5, 6

 For example, calculate the hash values of keys 1234 and 5462
 here, T_size = 97

 h(1234) = 1234 % 97 = 70
 h(5642) = 5642 % 97 = 16

Hash Functions (cont.):
Division

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Two steps:
 divide the key value into a number of parts such as k1, k2, …, kn

 each part is same number of digits except the last part
 add individual parts

 k1 + k2 + … + kn

 ignore the last carry, if any

 For example, given a hash table of 100 locations, calculate the hash
value using folding method for keys 5678 and 34567
 key: 5678  parts: 56 and 78  sum: 134

 hash value: 34 (ignore the last carry)
 key: 34567  parts: 34, 56, and 7  sum: 97

 hash value: 97

Hash Functions (cont.):
Folding

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Two steps:
 square the value of key, k2

 extract the middle r digits of the result
 h(k) = x, where x is obtained by selecting r digits from k2

 A good mid-square hash function
 most or all digits of the key value contribute to the result
 not dominated by the distribution of the bottom digits or the top digits of the

original key value
 For example, given a hash table of 100 locations, calculate the hash value for keys

1234 and 5642
 100 memory locations  indices vary from 0 to 99

 need only two digits to map the key to a location in the hash table, r = 2
 k = 1234  k2 = 1522756  h(1234) = 27
 k = 5642  k2 = 31832164  h(5642) = 32

Hash Functions (cont.):
Mid-Square Function

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Map two different keys to the same location in the hash table
 cannot store two records in the same location
 solve the problem of collision collision resolution
 cannot guarantee to eliminate collisions

 Two most popular methods
 open addressing
 etc.

Collisions

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Open addressing (or closed hashing)
 upon collision, compute new positions

 Two types of values in hash table
 sentinel values (e.g., -1  null): no data value in the location
 data values

 Probing
 process of examining memory locations in the hash table
 linear probing, etc.

Collisions (cont.):
Open Addressing

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 h(k, i) = [h’(k) + i] mod m, where
 m: size of the hash table
 h’(k) = (k mod m)
 i: the probe number varies from 0 to m – 1

 When inserting a key
 probe the location generated by h’(k) = k mod m

 if free, store the value
 if occupied, subsequently probe the locations generated by

 [h’(k) + 1] mod m, [h’(k) + 2] mod m, [h’(k) + 3] mod m, and so on

Open Addressing (cont.):
Linear Probing

second probe third probe fourth probe

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 For example, consider a hash table of size =10.
 linear probing, insert the keys 72, 27, 36, 24, 63, 81, 92, and 101 into the

table.

 72
 h(72, 0) = [h’(72) + 0] mod 10 = [72 mod 10 + 0] mod 10 = 2

 27
 h(27, 0) = [h’(27) + 0] mod 10 = [27 mod 10 + 0] mod 10 = 7

 36
 h(36, 0) = [h’(36) + 0] mod 10 = [36 mod 10 + 0] mod 10 = 6

Open Addressing (cont.):
Linear Probing (cont.)

101

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 For example, consider a hash table of size =10.
 linear probing, insert the keys 72, 27, 36, 24, 63, 81, 92, and 101 into the

table.

 24
 h(24, 0) = [h’(24) + 0] mod 10 = [24 mod 10 + 0] mod 10 = 4

 63
 h(63, 0) = [h’(63) + 0] mod 10 = [63 mod 10 + 0] mod 10 = 3

 81
 h(81, 0) = [h’(81) + 0] mod 10 = [81 mod 10 + 0] mod 10 = 1

Open Addressing (cont.):
Linear Probing (cont.)

101

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 For example, consider a hash table of size =10.
 linear probing, insert the keys 72, 27, 36, 24, 63, 81, 92, and 101 into the

table.

 92
 h(92, 0) = [h’(92) + 0] mod 10 = [92 mod 10 + 0] mod 10 = 2
 h(92, 1) = [h’(92) + 1] mod 10 = [92 mod 10 + 1] mod 10 = 3
 h(92, 2) = [h’(92) + 2] mod 10 = [92 mod 10 + 2] mod 10 = 4
 h(92, 3) = [h’(92) + 3] mod 10 = [92 mod 10 + 3] mod 10 = 5

Open Addressing (cont.):
Linear Probing (cont.)

101

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 For example, consider a hash table of size =10.
 linear probing, insert the keys 72, 27, 36, 24, 63, 81, 92, and 101 into the

table.

 101
 h(101, 0) = [h’(101) + 0] mod 10 = [101 mod 10 + 0] mod 10 = 1
 …
 h(101, 7) = [h’(101) + 7] mod 10 = [101 mod 10 + 7] mod 10 = 8

Open Addressing (cont.):
Linear Probing (cont.)

101

sentinel values

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Another example

Open Addressing (cont.):
Linear Probing (cont.)

CS 3353: Data Structures and Algorithm Analysis I, Fall 2022

 Searching a value using linear probing
 re-compute the array index
 compare the key stored at the location with the value to be searched
 same as for storing a value in a hash table
 if match?

 search time = O(1)
 if not?

 begin a sequential search

 three possible searching results
 found the value
 encounter a vacant location
 reach the end of the table

Open Addressing (cont.):
Linear Probing (cont.)

indicating the value is not present

indicating the value is not present

	Hashing
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22

