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 Main operations used by searching?? 
 comparing keys

 e.g., In sequential search
 search the table (or array) storing the elements in order
 key comparison determines a match

 e.g., In binary search
 the table (or array) storing the elements is divided into halves
 determine which half to check
 key comparison determines a match

 A different way to search??
 calculate the position of the key in the table based on the value of key

Introduction
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 A different way to search? 
 calculate the position of the key in the table based on the value of key
 the value of key indicates the position

 when the key is known, the position can be accessed directly
 no other preliminary tests
 search time:

 regardless of the number of elements being searched
 the run time is same

Introduction

O(1)
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 For example
 a small company of 100 employees, assigned an employ id in the range 

of 0 – 99
 employ id  index into the array (or table)
 directly access the record of any employee, if employ id is known

Introduction (cont.)

Employee Tablemapping

mapping

mapping

mapping

mapping

2-digit key 100 entries
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 For example (cont.)
 what if, five-digit employ id used as the primary key?
 key value ranging from 00000 to 99999  100,000 array size

 actually there are only 100 employees in the company
 just use last two digits of the key to identify each employee 

Introduction (cont.)

Employee Table
100,000 entries
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 For example (cont.), need to use five-digit employee id
 convert a five-digit key number to a two-digit array index?

 need a specific function…
 e.g., Emp_ID 79439  index 39
 e.g., Emp_ID 12345  index 45

 Terminologies
 hash table  an array
 hash function  carry out the transformation

 Hash function, h
 transform a key (e.g., string, number, record, or the like), K, into an index

for a table used to store items of the same type as K

 Perfect hash function, h
 h transforms different keys into different indexes

Introduction (cont.)

Our goal!

hash tablehash function
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 Hash table: a data structure where   
 keys are mapped to array positions (index) by a hash function

 For example, a direct correspondence between the keys and the 
indices of the array 
 useful when the total universe of keys is small
 useful when most of the keys are used from the whole set of keys

Hash Tables

storage requirement for a 
hash table, O(k), k is the 

number of keys actually used
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 Hashing
 process of mapping the keys to appropriate locations (or indices) in 

a hash table
 e.g., an element with key k stored at index h(k) , NOT k

 use a hash function h

Hash Tables (cont.)

storage requirement for a 
hash table, O(k), k is the 

number of keys actually used
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 Collision  
 two or more keys map to the same location

 e.g., k2 and k6 point to the same location
 e.g., k5 and k7 point to the same location

Hash Tables 
(cont.)

collision

collision

direct correspondence
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 A mathematical formula
 apply to a key (numeric or alphanumeric (i.e., ASCII)), and 
 produce an integer used as an index for the key in the hash table
 ideally produce a unique set of integers to reduce the number of 

collisions 
 A good hash function?

 minimize the number of collisions by spreading the elements 
uniformly throughout the array

 uniformity – map the keys as evenly as possible over output range
 minimize the number of collisions

 low cost – the cost of executing a hash function
 determinism – the same hash value must be generated for a given 

same input value

Hash Functions
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 The number that a hash function returns should be a valid index of 
the table

 Division modulo
 h(x) = x mod T_size, 

 where T_size = sizeof(table)
 it is a best choice if T_size is a prime number 

 e.g., T_size = 7 (prime number)
 remainder: 0, 1, 2, 3, 4, 5, 6

 For example, calculate the hash values of keys 1234 and 5462
 here, T_size = 97

 h(1234) = 1234 % 97 = 70
 h(5642) = 5642 % 97 = 16

Hash Functions (cont.):
Division
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 Two steps:    
 divide the key value into a number of parts such as k1, k2, …, kn

 each part is same number of digits except the last part
 add individual parts

 k1 + k2 + … + kn

 ignore the last carry, if any 

 For example, given a hash table of 100 locations, calculate the hash 
value using folding method for keys 5678 and 34567
 key: 5678  parts: 56 and 78  sum: 134 

 hash value: 34 (ignore the last carry)
 key: 34567  parts: 34, 56, and 7  sum: 97

 hash value: 97

Hash Functions (cont.):
Folding
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 Two steps:    
 square the value of key, k2

 extract the middle r digits of the result
 h(k) = x, where x is obtained by selecting r digits from k2

 A good mid-square hash function
 most or all digits of the key value contribute to the result 
 not dominated by the distribution of the bottom digits or the top digits of the 

original key value
 For example, given a hash table of 100 locations, calculate the hash value for keys 

1234 and 5642
 100 memory locations  indices vary from 0 to 99 

 need only two digits to map the key to a location in the hash table, r = 2
 k = 1234  k2 = 1522756  h(1234) = 27 
 k = 5642  k2 = 31832164  h(5642) = 32

Hash Functions (cont.):
Mid-Square Function
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 Map two different keys to the same location in the hash table
 cannot store two records in the same location
 solve the problem of collision collision resolution
 cannot guarantee to eliminate collisions

 Two most popular methods
 open addressing
 etc.

Collisions
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 Open addressing (or closed hashing)
 upon collision, compute new positions 

 Two types of values in hash table
 sentinel values (e.g., -1  null): no data value in the location
 data values

 Probing 
 process of examining memory locations in the hash table
 linear probing, etc.

Collisions (cont.):
Open Addressing
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 h(k, i) = [h’(k) + i] mod m, where
 m: size of the hash table
 h’(k) = (k mod m)
 i: the probe number varies from 0 to m – 1  

 When inserting a key
 probe the location generated by h’(k) = k mod m

 if free, store the value
 if occupied, subsequently probe the locations generated by

 [h’(k) + 1] mod m, [h’(k) + 2] mod m, [h’(k) + 3] mod m, and so on

Open Addressing (cont.):
Linear Probing

second probe third probe fourth probe
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 For example, consider a hash table of size =10. 
 linear probing, insert the keys 72, 27, 36, 24, 63, 81, 92, and 101 into the 

table.

 72
 h(72, 0) = [h’(72) + 0] mod 10 = [72 mod 10 + 0] mod 10 = 2 

 27
 h(27, 0) = [h’(27) + 0] mod 10 = [27 mod 10 + 0] mod 10 = 7 

 36
 h(36, 0) = [h’(36) + 0] mod 10 = [36 mod 10 + 0] mod 10 = 6  

Open Addressing (cont.):
Linear Probing (cont.)

101
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 For example, consider a hash table of size =10. 
 linear probing, insert the keys 72, 27, 36, 24, 63, 81, 92, and 101 into the 

table.

 24
 h(24, 0) = [h’(24) + 0] mod 10 = [24 mod 10 + 0] mod 10 = 4

 63
 h(63, 0) = [h’(63) + 0] mod 10 = [63 mod 10 + 0] mod 10 = 3

 81
 h(81, 0) = [h’(81) + 0] mod 10 = [81 mod 10 + 0] mod 10 = 1  

Open Addressing (cont.):
Linear Probing (cont.)

101
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 For example, consider a hash table of size =10. 
 linear probing, insert the keys 72, 27, 36, 24, 63, 81, 92, and 101 into the 

table.

 92
 h(92, 0) = [h’(92) + 0] mod 10 = [92 mod 10 + 0] mod 10 = 2
 h(92, 1) = [h’(92) + 1] mod 10 = [92 mod 10 + 1] mod 10 = 3
 h(92, 2) = [h’(92) + 2] mod 10 = [92 mod 10 + 2] mod 10 = 4  
 h(92, 3) = [h’(92) + 3] mod 10 = [92 mod 10 + 3] mod 10 = 5

Open Addressing (cont.):
Linear Probing (cont.)

101
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 For example, consider a hash table of size =10. 
 linear probing, insert the keys 72, 27, 36, 24, 63, 81, 92, and 101 into the 

table.

 101
 h(101, 0) = [h’(101) + 0] mod 10 = [101 mod 10 + 0] mod 10 = 1
 …
 h(101, 7) = [h’(101) + 7] mod 10 = [101 mod 10 + 7] mod 10 = 8

Open Addressing (cont.):
Linear Probing (cont.)

101

sentinel values
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 Another example 

Open Addressing (cont.):
Linear Probing (cont.)
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 Searching a value using linear probing
 re-compute the array index
 compare the key stored at the location with the value to be searched
 same as for storing a value in a hash table
 if match?

 search time = O(1)
 if not?

 begin a sequential search

 three possible searching results 
 found the value
 encounter a vacant location  
 reach the end of the table

Open Addressing (cont.):
Linear Probing (cont.)

indicating the value is not present

indicating the value is not present
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