
CS 4570 | CS 5070: Network Attack Security, Spring 2025

Race Condition Vulnerability

Lecture 13

Instructor: Dr. Cong Pu, Ph.D.

cong.pu@okstate.edu

Acknowledgment: Adapted partially from course materials from Dr. Wenliang Du at Syracuse University,
Dr. Fengwei Zhang at Southern University of Science and Technology, and Dr. Steven M. Bellovin at

Columbia University.

CS 4570 | CS 5070: Network Attack Security, Spring 2025

Introduction

◼ Race condition
◼ a situation where the output of a system or program is

dependent on the time of other uncontrollable events

◼ what if a privileged program has a race condition problem?

◼ attackers might affect the output of the privileged program

◼ Race condition in software
◼ two concurrent threads or processes access a shared

resource in a way that unintentionally produces different

results depending on the sequence or timing of the processes

or threads

CS 4570 | CS 5070: Network Attack Security, Spring 2025

General Race Condition Problem

◼ Example: the following code runs inside an ATM
◼ when customer withdraws money from ATM, withdraw()

checks remote database and sees whether the amount to be

withdrawn is less than customer’s current balance

◼ if yes, authorize the withdraw and updates the balance

Scenario:

• assuming you have $1,000

• will you be able to withdraw $1,800?

CS 4570 | CS 5070: Network Attack Security, Spring 2025

General Race Condition Problem

◼ How to withdraw $1,800 if the current balance is $1,000?
1. need two ATM cards and an accomplice

2. two of you withdraw $900 simultaneously
◼ after the first ATM finishes checking balance, but before updates

balance, the second ATM comes to ask for balance

◼ the second ATM still see $1,000 and authorize the withdraw

(There will still be $100 left on the balance.)

Vulnerability: race condition can

occur here if there are two

simultaneous withdraw requests.

CS 4570 | CS 5070: Network Attack Security, Spring 2025

A Special Type of Race Condition

◼ Time-of-Check to Time-of-Use (TOCTTOU) Race Condition

Vulnerability
◼ occurs when checking for a condition before using a

resource

◼ the condition can change between the time of check

and the time of use

◼ Dirty COW Race Condition Vulnerability
◼ allows attackers to modify any protected file, as long as the

file is readable to them

◼ gain the root privilege

◼ affects Android which is built on top of Linux

CS 4570 | CS 5070: Network Attack Security, Spring 2025

Race Condition Vulnerability

◼ The above program writes to a file in the /tmp directory (commonly

used to store temporary data; world-writable)

◼ As the root can write to any file, this program can write to any file

◼ To prevent user from overwriting other people’s file, this program

ensures that the real user has permissions to write to the target file

◼ access() system call checks if the real user ID has write permission

to /tmp/X file

◼ 0 returned if the real user does not have permission

◼ After the check, the file is opened for writing

 Root-owned Set-UID program

 Effective UID (EUID): root

 Real User ID (RUID): seed

SET-UID (Set User ID upon execution) is a special permission bit used in Unix-like operating systems.

• When this permission is set on an executable file, the program runs with the privileges of the file's

owner rather than the privileges of the user executing it.

• This is particularly useful for allowing regular users to execute certain tasks that require elevated

privileges.

• Ref.: https://www.liquidweb.com/blog/how-do-i-set-up-setuid-setgid-and-sticky-bits-on-linux/

https://www.liquidweb.com/blog/how-do-i-set-up-setuid-setgid-and-sticky-bits-on-linux/

CS 4570 | CS 5070: Network Attack Security, Spring 2025

Race Condition Vulnerability (cont.)

◼ open() checks user’s permission: the effective user ID

◼ since the root-owned Set-UID program runs with an effective user

ID zero, the check of open() always succeeds

◼ rationale: putting an additional check using access() before open()

◼ however, there is a window between the time when the file is checked

and the time when the file is open

 Root-owned Set-UID program

 Effective UID (EUID): root

 Real User ID (RUID): seed

a window between access()

and open() function calls

CS 4570 | CS 5070: Network Attack Security, Spring 2025

Race Condition Vulnerability (cont.)

◼ What can be done inside the window?

◼ To help thinking, assuming the program is running very slowly

◼ so slow that it takes one minute to execute one line of the code

◼ Goal: use the program’s root privilege to write to a protected file,

/etc/passwd (password file)

◼ is it possible? you might say it is not possible
◼ once a privileged program runs, its internal memory cannot be

changed

◼ cannot modify the program as normal users

 (no write permission to root-owned file)

 Root-owned Set-UID program

 Effective UID (EUID): root

 Real User ID (RUID): seed

a window between access()

and open() function calls

CS 4570 | CS 5070: Network Attack Security, Spring 2025

Race Condition Vulnerability (cont.)

◼ What can be done inside the window?

◼ Direction: figure out how to make /etc/passwd become the target file,

without changing the file name used in the program

◼ symbolic link (soft link) helps us to achieve it

◼ a special type of file that points to another file or directory

◼ independent: if the symbolic link is deleted, the original file

remains unaffected

◼ broken links: if the target is moved or deleted, the symbolic

link becomes a "broken link" and won't work

 Root-owned Set-UID program

 Effective UID (EUID): root

 Real User ID (RUID): seed

a window between access()

and open() function calls

CS 4570 | CS 5070: Network Attack Security, Spring 2025

Race Condition Vulnerability (cont.)

Create a regular file X inside /tmp

directory before running program

Change “/tmp/X” to symbolic link,

pointing to “/etc/passwd”

open() checks for the EUID which is

root

Open password file for write

pass access() check because it is our own file

right after access(), but before the program

reaches open()

not change the name “/tmp/X”, but changed the

meaning of the name - /etc/passwd

open() checks effective user ID, not real user ID

password file is actually open because the target

file has a symbolic link pointing to password file

CS 4570 | CS 5070: Network Attack Security, Spring 2025

Race Condition Vulnerability (cont.)

Create a regular file X inside /tmp

directory before running program

Change “/tmp/X” to symbolic link,

pointing to “/etc/passwd”

open() checks for the EUID which is

root

Open password file for write

Issues:

• As the program runs billions of instructions per

second, the window between the time to check,

access(), and time to use, open(), lasts for a very

short period of time, making it impossible to

change to a symbolic link

• if the change is too early, access() will fail

• if the change is little late, the program will

finish using the file /tmp/X

• must make the change during the window

Solution:

• try randomly

• the chance of hitting the window is low

• try enough times, eventually be lucky

a window between access()

and open() function calls

CS 4570 | CS 5070: Network Attack Security, Spring 2025

Race Condition Vulnerability (cont.)

• To win the race condition (TOCTTOU window), we need two processes:

• one runs vulnerable program in a loop

• the other runs the attack program

CS 4570 | CS 5070: Network Attack Security, Spring 2025

Understanding the Winning

Consider steps for two programs:

Attack Program:

◼ A1 : Make “/tmp/X” point to

 a file owned by us

◼ A2 : Make “/tmp/X” point to

/etc/passwd

Vulnerable Program:

◼ V1 : Check user’s permission

 on “/tmp/X”

◼ V2 : Open the file

Attack program runs: A1,A2,A1,A2…

Vulnerable program runs: V1,V2,V1,V2…..

As the programs are running

simultaneously on a multi-core machine,

the instructions will be interleaved

(mixture of two sequences)

• the way these two sequences are

interleaved is difficult to control

• depending on many factors such as

CPU speed, context switch, etc.

A1, V1, A2, V2: vulnerable prog. opens

/etc/passwd for writing

CS 4570 | CS 5070: Network Attack Security, Spring 2025

Another Race Condition Example

Set-UID program that runs

with root privilege.

1. Checks if the file

“/tmp/X” exists

2. If not, open() system

call is invoked. If the file

doesn’t exist, new file is

created with the

provided name

3. There is a window between the check and use (opening

the file)

4. If the file already exists, the open() system call will not

fail. It will open the file for writing

5. So, we can use this window between the check and use

and point the file to an existing file “/etc/passwd” and

eventually write into it

Original intention: create a new file

Outcome: write to a protected file

	Slide 1: Race Condition Vulnerability
	Slide 2: Introduction
	Slide 3: General Race Condition Problem
	Slide 4: General Race Condition Problem
	Slide 5: A Special Type of Race Condition
	Slide 6: Race Condition Vulnerability
	Slide 7: Race Condition Vulnerability (cont.)
	Slide 8: Race Condition Vulnerability (cont.)
	Slide 9: Race Condition Vulnerability (cont.)
	Slide 10: Race Condition Vulnerability (cont.)
	Slide 11: Race Condition Vulnerability (cont.)
	Slide 12: Race Condition Vulnerability (cont.)
	Slide 13: Understanding the Winning
	Slide 14: Another Race Condition Example

