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Introduction

◼ Real-world web app., data are stored in database
◼ save data to or get data from database

◼ construct SQL statement

◼ send SQL statement to database

◼ database

◼ execute SQL statement

◼ return results back to web app.

◼ SQL statement usually contains user-provide data
◼ what if a SQL statement is not constructed properly?

◼ injecting code into SQL statement

◼ cause database to execute code

◼ SQL injection vulnerability
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A Brief  Tutorial of SQL

◼ Login to database, e.g., MySQL:
◼ use MySQL database, which is an open-source relational database

management system

◼ login using the following command

◼ create database:
◼ inside MySQL, create multiple databases

◼ ‘SHOW DATABSES’ command can be used to list existing databases

◼ create new database called dbtest

login name password

Note:

• space between –u and login name

• space between –p and password

mysql prompt: indicating login successfully

SQL commands are not case sensitive

• using upper-case to separate from 

      non-commands in lower-case

create database command
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SQL Tutorial: Create a Table

◼ Relational database organizes data using tables
◼ database has multiple tables

◼ create table called employee with seven attributes (i.e., columns) 

for the database dbtest

select 

database 

to use

display the structure of table ‘employee’

define the structure of table ‘employee’

• table columns are defined inside parentheses

• each column contains 

• name, followed by type

• number: maximum length

• constraints (i.e., NOT NULL)
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SQL Tutorial: Insert a Row

◼ use the ‘INSERT INTO’ statement to insert new record into  

table:

◼ insert a record into employee table

◼ did not specify a value of the ID column, as it will be automatically 

set by the database
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SQL Tutorial: Insert a Row

◼ the ‘SELECT’ statement is the most common operation on 

databases
◼ retrieves information from database

asks the database for all its 

records, including all the 

columns

asks the database only for 

Name, EID and Salary 

columns

all records
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SQL Tutorial: WHERE Clause

◼ it is uncommon for a SQL query to retrieve all records in  

database

◼ ‘WHERE’ clause is used to set conditions for several types of 

SQL statements including ‘SELECT’, ‘UPDATE’, ‘DELETE’, etc.

◼ the above SQL statement only affects the rows for which the 

predicate in the ‘WHERE’ clause is TRUE

◼ row for which predicate evaluates to FALSE or Unknown are not 

affected

◼ the predicate is a logical expression

◼ multiple predicates can be combined using keywords AND and 

OR
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SQL Tutorial: WHERE Clause

◼ 1st query: return a record that has EID5001 in the EID field

◼ 2nd query: return the records that satisfy either EID = ‘EID5001’ 

or Name = ‘David’
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SQL Tutorial: WHERE Clause

◼ if the condition is always True, then all the rows are affected by 

SQL statement

◼ this 1 = 1 predicate looks quite useless in real queries

◼ useful in SQL Injection attacks
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SQL Tutorial: UPDATE Statement

◼ use the ‘UPDATE’ Statement to modify an existing record

multiple columns separated by comma
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SQL Tutorial: Comments

◼ MySQL supports three comment styles
◼ text from the # character to the end of line is treated as a 

comment

◼ text from the --_ to the end of line is treated as a comment

◼ this style requires the second dash to be followed by at least 

one whitespace or control character 

◼ similar to C language, text between /* and */ is treated as a 

comment

◼ this style allows comment to be inserted into the middle of 

SQL statement; commend can span multiple lines

space
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Interacting with Database in Web 

Application

◼ Typical web app. consists of three major components:

◼ web browser

◼ get content; present content; interact with user; get user input

◼ communicate with web app. server using HTTP or HTTPS

◼ web app. server

◼ generate and deliver content to browser; rely on independent 

database server for data management

◼ interact with database using SQL

◼ database
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Interacting with Database in Web 

Application

◼ Typical web app. consists of three major components:

◼ SQL injection attacks can cause damage to database

◼ users do not directly interact with database but through web 

server
◼ web app. server provide a channel for user’s data to reach database

◼ if this channel is not implemented properly, malicious users can 

attack database
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Getting Data from User

◼ Form where users can type their data
◼ once ‘Submit’ button is clicked, an HTTP request will be sent out 

with data attached

◼ HTML source of the above form is given below: 

◼ request generated is:

GET or POST 

name of input field
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Getting Data from User

◼ HTTP GET request
◼ method field in HTML code specified GET type

◼ in GET requests, parameters are attached after the question mark ? 

in the URL

◼ each parameter has a name=value pair and are separated by “&”

◼ in the case of HTTPS, the format would be similar but the data will 

be encrypted

◼ once this request reached the target PHP script (getdata.php)
◼ the parameters inside HTTP request will be saved to an array 

$_GET or $_POST

◼ an example shows a PHP script getting data from GET request

$_GET: an associative array of variables passed to 

the current script via the URL parameters
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Launching SQL Injection Attacks

◼ user input will become part of the SQL statement
◼ is it possible for a user to change the meaning of the SQL 

statement?

◼ example: the intention of the web app developer by the 

following is for user to provide some data for the blank areas

◼ what if user inputs a random string in the password entry and 

types “EID5002’ #” in the eid entry 

◼ the SQL statement will become the following 

everything from # sign to the end of line is considered as comment 
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Launching SQL Injection Attacks

◼ the SQL statement will be equivalent to the following:

◼ return the name, salary and SSN of the employee whose EID is 

EID5002 even though the user doesn’t know the employee’s 

password. 

◼ let’s see if a user can get all the records from the database 
◼ assuming that we don’t know all the EID’s in the database

◼ create a predicate for ‘WHERE’ clause so that it is true for all 

records

always true
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