
CS 4570 | CS 5070: Network Attack Security, Spring 2025

Web Security

Lecture 18

Instructor: Dr. Cong Pu, Ph.D.

cong.pu@okstate.edu

Acknowledgment: Adapted partially from course materials from Dr. Wenliang Du at Syracuse University,
Dr. Fengwei Zhang at Southern University of Science and Technology, and Dr. Steven M. Bellovin at

Columbia University.

CS 4570 | CS 5070: Network Attack Security, Spring 2025

Introduction

◼ Real-world web app., data are stored in database
◼ save data to or get data from database

◼ construct SQL statement

◼ send SQL statement to database

◼ database

◼ execute SQL statement

◼ return results back to web app.

◼ SQL statement usually contains user-provide data
◼ what if a SQL statement is not constructed properly?

◼ injecting code into SQL statement

◼ cause database to execute code

◼ SQL injection vulnerability

CS 4570 | CS 5070: Network Attack Security, Spring 2025

A Brief Tutorial of SQL

◼ Login to database, e.g., MySQL:
◼ use MySQL database, which is an open-source relational database

management system

◼ login using the following command

◼ create database:
◼ inside MySQL, create multiple databases

◼ ‘SHOW DATABSES’ command can be used to list existing databases

◼ create new database called dbtest

login name password

Note:

• space between –u and login name

• space between –p and password

mysql prompt: indicating login successfully

SQL commands are not case sensitive

• using upper-case to separate from

 non-commands in lower-case

create database command

CS 4570 | CS 5070: Network Attack Security, Spring 2025

SQL Tutorial: Create a Table

◼ Relational database organizes data using tables
◼ database has multiple tables

◼ create table called employee with seven attributes (i.e., columns)

for the database dbtest

select

database

to use

display the structure of table ‘employee’

define the structure of table ‘employee’

• table columns are defined inside parentheses

• each column contains

• name, followed by type

• number: maximum length

• constraints (i.e., NOT NULL)

CS 4570 | CS 5070: Network Attack Security, Spring 2025

SQL Tutorial: Insert a Row

◼ use the ‘INSERT INTO’ statement to insert new record into

table:

◼ insert a record into employee table

◼ did not specify a value of the ID column, as it will be automatically

set by the database

CS 4570 | CS 5070: Network Attack Security, Spring 2025

SQL Tutorial: Insert a Row

◼ the ‘SELECT’ statement is the most common operation on

databases
◼ retrieves information from database

asks the database for all its

records, including all the

columns

asks the database only for

Name, EID and Salary

columns

all records

CS 4570 | CS 5070: Network Attack Security, Spring 2025

SQL Tutorial: WHERE Clause

◼ it is uncommon for a SQL query to retrieve all records in

database

◼ ‘WHERE’ clause is used to set conditions for several types of

SQL statements including ‘SELECT’, ‘UPDATE’, ‘DELETE’, etc.

◼ the above SQL statement only affects the rows for which the

predicate in the ‘WHERE’ clause is TRUE

◼ row for which predicate evaluates to FALSE or Unknown are not

affected

◼ the predicate is a logical expression

◼ multiple predicates can be combined using keywords AND and

OR

CS 4570 | CS 5070: Network Attack Security, Spring 2025

SQL Tutorial: WHERE Clause

◼ 1st query: return a record that has EID5001 in the EID field

◼ 2nd query: return the records that satisfy either EID = ‘EID5001’

or Name = ‘David’

CS 4570 | CS 5070: Network Attack Security, Spring 2025

SQL Tutorial: WHERE Clause

◼ if the condition is always True, then all the rows are affected by

SQL statement

◼ this 1 = 1 predicate looks quite useless in real queries

◼ useful in SQL Injection attacks

CS 4570 | CS 5070: Network Attack Security, Spring 2025

SQL Tutorial: UPDATE Statement

◼ use the ‘UPDATE’ Statement to modify an existing record

multiple columns separated by comma

CS 4570 | CS 5070: Network Attack Security, Spring 2025

SQL Tutorial: Comments

◼ MySQL supports three comment styles
◼ text from the # character to the end of line is treated as a

comment

◼ text from the --_ to the end of line is treated as a comment

◼ this style requires the second dash to be followed by at least

one whitespace or control character

◼ similar to C language, text between /* and */ is treated as a

comment

◼ this style allows comment to be inserted into the middle of

SQL statement; commend can span multiple lines

space

CS 4570 | CS 5070: Network Attack Security, Spring 2025

Interacting with Database in Web

Application

◼ Typical web app. consists of three major components:

◼ web browser

◼ get content; present content; interact with user; get user input

◼ communicate with web app. server using HTTP or HTTPS

◼ web app. server

◼ generate and deliver content to browser; rely on independent

database server for data management

◼ interact with database using SQL

◼ database

CS 4570 | CS 5070: Network Attack Security, Spring 2025

Interacting with Database in Web

Application

◼ Typical web app. consists of three major components:

◼ SQL injection attacks can cause damage to database

◼ users do not directly interact with database but through web

server
◼ web app. server provide a channel for user’s data to reach database

◼ if this channel is not implemented properly, malicious users can

attack database

CS 4570 | CS 5070: Network Attack Security, Spring 2025

Getting Data from User

◼ Form where users can type their data
◼ once ‘Submit’ button is clicked, an HTTP request will be sent out

with data attached

◼ HTML source of the above form is given below:

◼ request generated is:

GET or POST

name of input field

CS 4570 | CS 5070: Network Attack Security, Spring 2025

Getting Data from User

◼ HTTP GET request
◼ method field in HTML code specified GET type

◼ in GET requests, parameters are attached after the question mark ?

in the URL

◼ each parameter has a name=value pair and are separated by “&”

◼ in the case of HTTPS, the format would be similar but the data will

be encrypted

◼ once this request reached the target PHP script (getdata.php)
◼ the parameters inside HTTP request will be saved to an array

$_GET or $_POST

◼ an example shows a PHP script getting data from GET request

$_GET: an associative array of variables passed to

the current script via the URL parameters

CS 4570 | CS 5070: Network Attack Security, Spring 2025

Launching SQL Injection Attacks

◼ user input will become part of the SQL statement
◼ is it possible for a user to change the meaning of the SQL

statement?

◼ example: the intention of the web app developer by the

following is for user to provide some data for the blank areas

◼ what if user inputs a random string in the password entry and

types “EID5002’ #” in the eid entry

◼ the SQL statement will become the following

everything from # sign to the end of line is considered as comment

CS 4570 | CS 5070: Network Attack Security, Spring 2025

Launching SQL Injection Attacks

◼ the SQL statement will be equivalent to the following:

◼ return the name, salary and SSN of the employee whose EID is

EID5002 even though the user doesn’t know the employee’s

password.

◼ let’s see if a user can get all the records from the database
◼ assuming that we don’t know all the EID’s in the database

◼ create a predicate for ‘WHERE’ clause so that it is true for all

records

always true

	Slide 1: Web Security
	Slide 2: Introduction
	Slide 3: A Brief Tutorial of SQL
	Slide 4: SQL Tutorial: Create a Table
	Slide 5: SQL Tutorial: Insert a Row
	Slide 6: SQL Tutorial: Insert a Row
	Slide 7: SQL Tutorial: WHERE Clause
	Slide 8: SQL Tutorial: WHERE Clause
	Slide 9: SQL Tutorial: WHERE Clause
	Slide 10: SQL Tutorial: UPDATE Statement
	Slide 11: SQL Tutorial: Comments
	Slide 12: Interacting with Database in Web Application
	Slide 13: Interacting with Database in Web Application
	Slide 14: Getting Data from User
	Slide 15: Getting Data from User
	Slide 19: Launching SQL Injection Attacks
	Slide 20: Launching SQL Injection Attacks

