Packet Sniffing and Spoofing

Lecture 03
Instructor: Dr. Cong Pu, Ph.D.
cong.pu@okstate.edu
Acknowledgment:Adapted partially from course materials from Dr.Wenliang Du at Syracuse University,

Dr. Fengwei Zhang at Southemn University of Science and Technology, and Dr. Steven M. Bellovin at
Columbia University.

Yo S

CS 4570 | CS 5070: Network Attack Security, Spring 2025

Processing Captured Packet

m got packet(...) is invoked once a packet is captured
0 in demonstration: print out a simple msg
o in real world: process packet, or even react to packet
. e.g., capturing a DNS request packet and sending out a
spoofed reply based on the content of packet
= got_packet(...)

void got_packet (u_char =*args, const struct pcap pkthdr *header,
const u_char =xpacket)

0 args: a user-defined argument passed to the callback
o NULL or point to some user data
m header: a pointer to a pcap_pkthdr structure, which contains
metadata about the captured packet
Yo S

i e.g., timestamp and length
CS 4570 | CS 5070: Network Attack Security, Spring 2025

Processing Captured Packet

m got packet(...) is invoked once a packet is captured
0 in demonstration: print out a simple msg
o in real world: process packet, or even react to packet
. e.g., capturing a DNS request packet and sending out a
spoofed reply based on the content of packet
= got_packet(...)

void got_packet (u_char =*args, const struct pcap pkthdr +header,
const u_char =xpacket)

g u_char *packet: a pointer points to the buffer that holds the
packet

8 u_char (unsigned char) indicates the contents of the buffer
are a sequence of characters (have structures internally)

including an ethernet frame
CS 4570 | CS 5070: Network Attack Security, Spring 2025 €thernet header placed at the beginning *

Processing Captured Packet

L How we visualize IP packet

Header
<«— 24 bytes ——>»

<
-

4 bytes (32 bits)

Version Length Service type Packet Length
Identification DF MF Fragment Offset
Time To Live Transport Header Checksum

Source IP Address

Destination IP Address

Options

Data

= How computer stores packet

Padding

Y

Version

Length

Service type

Packet length

CS 4570 | CS 5070: Network Attack Security, Spring 2025

Ethernet layer 2 header

(5 2,
Preamble Destination MAC Source MAC VLAN Ether- CRC
& SoF address address tag type Payload 4-bytes
6-byles 6-bytes 4-bytes 2-bytes

Processing Captured Packet (cont.)

inconvenient & not scalable

= Checking whether the type field (Ethertype) of ethernet header
is IP or something: find the offset of type field and read its value
m Efficient idea: struct: a group of variables stored in contiguous memory
! case a buffer to a struct to treat the buffer as a structure;
2 access its data using the structure’s field names

/* Ethernet header =/

struct ethheader |
u_char ether_dhost [ETHEE_ADDE_LEN]; /* destination heost address =/
u_char ether_shost [ETHER_ADDR_LEN]; /* source host address =/
u_short ether type; /+ IP? BARP? EBARP? etc =/ packet argument contains a

copy of the packet, including the
. Ethernet header
void got_packet (u_char =#args, const struct pcap pkthdr xheader, .
e I * typecast it to the Ethernet
{ header structure

bi

struct ethheader xeth = (struct ethheader =x)packet”

if (ntohs(eth->ether_type) == 0x0800) { ... } // IP packet

. access the field of the structure
} IPv4

Yo S

CS 4570 | CS 5070: Network Attack Security, Spring 2025

Processing Captured Packet (cont.)

= More to do...: print out some info. from the IP header

void got_packet (u_char xargs,

struct ethheader *xeth =

if (ntohs(eth->ether_ type)
struct ipheader « ip =

typecast to IP

header structure
printf (" From:

printf (" To:

/* determine protocol =/

const struct pcap_pkthdr xheader,
const u_char xpacket)

(struct ethheader »)packet;

== 0x0800) { // 0x0800 is IP type

(struct ipheader «)
(packet + sizeof (struct ethheader));

$s\n",
Fs\n",

IP header structure offset
inet_ntoa(ip—->iph_sourceip));

inet_ntoa(ip—->iph_destip));

access IP header structure

switch(ip—->iph protocol) { * src.IP addr.
case IPPROTO_ TCP: e des.|IP addr.
printf (" Protocol: TCP\n");
return;
case IPPROTO UDP:
printf (" Protocol: UDP\N");
return;

CS 4570 | CS 5070: Network Attack Security, Spring 2025

@

find where the [P
header starts and
typecast it to the IP
header structure

* distance: the size of
ethernet header

access the fields
in the IP header

Yo S

Processing Captured Packet (cont.)

= Compile the program

$ gcc —o sniff_improved sniff_improved.c —Ipcap
= Run the program

$ sudo ./sniff_improved

CS 4570 | CS 5070: Network Attack Security, Spring 2025

Packet Spoofing

= Typical socket programming:
0 we have controls over a few selected fields in the header
o des. IP addr. (not src. IP addr.)
when the packet is sent out, the OS will put
corresponding IP addr. in the src. IP field
= In network attacks, packets are constructed with bogus,
unredlistic, and targeted info. in the headers.
o TCP SYN flooding attack: src. IP addr. is randomly generated
0 TCP session hijacking attack:
m use other people’s IP addr
o set correct sequence and port #s
o sending packets like those is called packet spoofing
o critical info. in the packet is forged

CS 4570 | CS 5070: Network Attack Security, Spring 2025

Packet Spoofing (cont.)

in C language can give you an idea

= Writing your own packet spoofing tool C
r 8
how these tools are built et

m Tools for spoofing packets: Netwox Scapy
= Scapy
0 packet manipulation tool

= forge or decode packets of a wide number of protocols
0 send packets on the wire, capture them, match requests and
replies

Yo S

CS 4570 | CS 5070: Network Attack Security, Spring 2025

Sending Normal Packet Using
Socket

= Normally sending out packets requires three steps for UDP

client program:

. create a socket
2 provide des. info., e.g., des. IP addr. and des. UDP port #

3, call sendto() to send out a UDP packet with payload
o The OS will construct the actual UDP packet based on the

info provided

CS 4570 | CS 5070: Network Attack Security, Spring 2025

Sending Normal Packet Using

Socket (cont.)

= Normally sending out packets requires three steps:

void main ()

{

struct sockaddr in dest info;
char »data = "UDP message’\n";

// Step 1l: Create a network socket

int sock = socket (AF_INET, SOCK DGRAM, IPPROTO_UDP);

// Step 2: Provide information about destination.
memset ((char x) &dest info, 0, sizeof(dest info));
dest_info.sin family = AF_TINET;

dest _info.sin addr.s addr = inet addr("10.0.2.5");
dest_info.sin_port = htons (9090);

// Step 3: Send out the packet.
sendto (sock, data, strlen(data), 0O,

Testing:
* Use the netcat (nc) command to run

a UDP server on 10.0.2.5.
* Run the program on another machine.

Output:
* The message has been delivered to
the server machine

(struct sockaddr x)&dest info, sizeof (dest info));

close (sock);

(port #)

seed@Server (10.0.2.5) :$ nc —-luv 9090
Connection from 10.0.2.6 port 9090 [udp/=*]

CS 4570 | CS 5070: Network Attack Security, Spring 202 UDP message

accepted

	Slide 1: Packet Sniffing and Spoofing
	Slide 2: Processing Captured Packet
	Slide 3: Processing Captured Packet
	Slide 4: Processing Captured Packet
	Slide 5: Processing Captured Packet (cont.)
	Slide 6: Processing Captured Packet (cont.)
	Slide 7: Processing Captured Packet (cont.)
	Slide 8: Packet Spoofing
	Slide 9: Packet Spoofing (cont.)
	Slide 10: Sending Normal Packet Using Socket
	Slide 11: Sending Normal Packet Using Socket (cont.)

