
CS 4570 | CS 5070: Network Attack Security, Spring 2025

Format String Vulnerability

Lecture 16

Instructor: Dr. Cong Pu, Ph.D.

cong.pu@okstate.edu

Acknowledgment: Adapted partially from course materials from Dr. Wenliang Du at Syracuse University,
Dr. Fengwei Zhang at Southern University of Science and Technology, and Dr. Steven M. Bellovin at

Columbia University.

CS 4570 | CS 5070: Network Attack Security, Spring 2025

Access Optional Arguments

• va_list pointer (line 1) accesses the

optional arguments.

• va_start() macro (line 2) calculates

the initial position of va_list based

on the second argument Narg (last

argument before the optional

arguments begin)

a list of unnamed arguments whose number

and types are not known to the called function.

a type to hold information

about variable arguments

end using variable argument list

retrieve next argument

• void va_start (va_list ap, paramN)

• initializes ap to retrieve the

additional arguments after

parameter paramN.

CS 4570 | CS 5070: Network Attack Security, Spring 2025

Access Optional Arguments

• type va_arg (va_list ap, type)

• retrieve the value of the

current argument in the

variable arguments list

identified by ap.

• advance to the next argument

in the the variable arguments

list identified by ap.

a list of unnamed arguments whose number

and types are not known to the called function.

a type to hold information

about variable arguments

end using variable argument list

retrieve next argument

CS 4570 | CS 5070: Network Attack Security, Spring 2025

Access Optional Arguments

• when myprint() is invoked (line  and )

• all arguments are pushed into the stack

• va_list is used to access the optional args

• va_start() (line ) calculates the initial position of

va_list based on the Narg

• to access the optional args pointed by va_list, we

need to use va_arg()

• return the value pointed by the va_list

pointers

• advances (how much) the pointer to where

the next optional arg is stored

• finish up by calling

stack layout for

va_list pointer the type of optional

arg to be accessed

CS 4570 | CS 5070: Network Attack Security, Spring 2025

How printf() Access Optional

Arguments

◼ printf() also uses the stdarg macros

◼ Q: how it know the type of arg?

◼ Q: how it know the end of arg list?

◼ here, printf() has three (3) optional arguments
◼ elements starting with “%” are called format

specifiers

◼ printf() scans the format string and prints out

each character until “%” is encountered
◼ printf() calls va_arg(), which returns the optional

arg pointed by va_list and advances it to next arg

◼ type? -- type field of format specifier

• when printf() is called

• all arguments are pushed

into stack

• when scanning and printing

• replace the 1st format

specifier % with the value

from the first optional arg

• the same idea will be

applied to other args

CS 4570 | CS 5070: Network Attack Security, Spring 2025

Missing Optional

Arguments

• three (3) format specifiers % vs. two (2) optional args

• cannot be caught by compiler

• at runtime, detecting mismatches require boundary

marking on the stack

• detecting when it reaches the last optional arg

• printf() uses the # of format specifiers to

determine the # of optional args

• what if a programmer makes a mistake:

the # of optional args ≠ the # of format specifiers

• printf() relies on va_arg() to fetch

optional args from stack

• when va_arg() is called

• the value of arg is fetched

• advance to next arg

• va_arg() doesn’t know whether it

has reached the end of optional

args list

• if called again, va_arg()

continues fetching data from

stack (even though the data is

NOT optional arg)Unfortunately, no such marking in the system

CS 4570 | CS 5070: Network Attack Security, Spring 2025

Format String Vulnerability

◼ if there is a mismatch in a format string
◼

◼ print out incorrect information and cause some problems

◼ does not pose any severe threat

◼ it might be true if the mismatch comes from programmer

◼ if a format string comes from malicious users
◼ the damage can be far worse than what we can expect

◼ format string vulnerability

• print out some data provided by users, user_input

• what if user_input has format specifiers

• correct way: printf(“%s”, user_input);

the # of optional args ≠ the # of format specifiers %

no format specifier

CS 4570 | CS 5070: Network Attack Security, Spring 2025

Format String Vulnerability

◼ if there is a mismatch in a format string
◼

◼ print out incorrect information and cause some problems

◼ does not pose any severe threat

◼ it might be true if the mismatch comes from programmer

◼ if a format string comes from malicious users
◼ the damage can be far worse than what we can expect

◼ format string vulnerability

• print out some user-provided information, along with data

generated from program

• users may place some format specifiers in their input

the # of optional args ≠ the # of format specifiers %

CS 4570 | CS 5070: Network Attack Security, Spring 2025

Format String Vulnerability

◼ if there is a mismatch in a format string
◼

◼ print out incorrect information and cause some problems

◼ does not pose any severe threat

◼ it might be true if the mismatch comes from programmer

◼ if a format string comes from malicious users
◼ the damage can be far worse than what we can expect

◼ format string vulnerability

• in these two examples, user’s input (user_input)

becomes part of a format string.

• what will happen if user_input contains format

specifiers?

the # of optional args ≠ the # of format specifiers %

CS 4570 | CS 5070: Network Attack Security, Spring 2025

Vulnerable Code

◼ vulnerable program
◼ function fmtstr()

◼ take user input

◼ print out the input

• char *fgets(char *str, int n, FILE *stream)
• str: this is the pointer to an array of

chars where the string read is stored.

• n: this is the maximum number of

characters to be read (including the

final null-character). usually, the length

of the array passed as str is used.

• stream: this is the pointer to a FILE

object that identifies the stream where

characters are read from.

vulnerable to format string attacks

CS 4570 | CS 5070: Network Attack Security, Spring 2025

Exploiting Format String Vulnerability

◼ Format string vulnerability allows attackers to do a

wide variety of damages
◼ crash a program

◼ steal secret data from a program

◼ modify a program’s memory

◼ get a program to run attacker’s malicious code

$ gcc –o vul vul.c

$ sudo chown root vul

$ sudo chmod 4755 vul

$ sudo sysctl -w kernel.randomize_va_space=0

CS 4570 | CS 5070: Network Attack Security, Spring 2025

Attack 1:

Crash Program

◼ printf() does not include any optional argument,

◼ if we put several format specifiers % in the input, we can get

printf() to advance its va_list pointer to the places beyond the

printf() function’s stack frame

◼ use input: %s%s%s%s%s%s%s%s

◼ printf() parses the format string
◼ for each %s, it fetches a value where va_list points to and advances

va_list to the next position

◼ as we give %s, printf() treats the value as address and fetches data

from that address

◼ if the value is not a valid address, the program crashes

CS 4570 | CS 5070: Network Attack Security, Spring 2025

Vulnerable Code

◼ vulnerable program
◼ function fmtstr()

◼ take user input

◼ print out the input

• char *fgets(char *str, int n, FILE *stream)
• str: this is the pointer to an array of

chars where the string read is stored.

• n: this is the maximum number of

characters to be read (including the

final null-character). usually, the length

of the array passed as str is used.

• stream: this is the pointer to a FILE

object that identifies the stream where

characters are read from.

vulnerable to format string attacks

secret value

CS 4570 | CS 5070: Network Attack Security, Spring 2025

Attack 2:

Print Out Data on the Stack

◼ suppose a variable on the stack contains a secret (constant) and

we need to print it out
◼ assume that the var variable contains a secret (dynamically

generated)

◼ use user input: %x.%x.%x.%x.%x.%x.%x.%x
◼ printf() prints out the integer value pointed by va_list pointer and

advances it by 4 bytes

◼ the number of %x is decided by the distance between the starting

point of the va_list pointer and the variable

◼ it can be achieved by trial and error

	Slide 1: Format String Vulnerability
	Slide 2: Access Optional Arguments
	Slide 3: Access Optional Arguments
	Slide 4: Access Optional Arguments
	Slide 5: How printf() Access Optional Arguments
	Slide 6: Missing Optional Arguments
	Slide 7: Format String Vulnerability
	Slide 8: Format String Vulnerability
	Slide 9: Format String Vulnerability
	Slide 10: Vulnerable Code
	Slide 11: Exploiting Format String Vulnerability
	Slide 12: Attack 1: Crash Program
	Slide 13: Vulnerable Code
	Slide 14: Attack 2: Print Out Data on the Stack

