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Access Optional Arguments

• va_list pointer (line 1) accesses the 

optional arguments.

• va_start() macro (line 2) calculates 

the initial position of va_list based 

on the second argument Narg (last 

argument before the optional 

arguments begin)

a list of unnamed arguments whose number 

and types are not known to the called function.

a type to hold information 

about variable arguments

end using variable argument list

retrieve next argument

• void va_start (va_list ap, paramN)

• initializes ap to retrieve the 

additional arguments after 

parameter paramN.
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Access Optional Arguments

• type va_arg (va_list ap, type)

• retrieve the value of the 

current argument in the 

variable arguments list 

identified by ap. 

• advance to the next argument 

in the the variable arguments 

list identified by ap. 

a list of unnamed arguments whose number 

and types are not known to the called function.

a type to hold information 

about variable arguments

end using variable argument list

retrieve next argument
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Access Optional Arguments

• when myprint() is invoked (line  and )

• all arguments are pushed into the stack

• va_list is used to access the optional args

• va_start() (line ) calculates the initial position of 

va_list based on the Narg 

• to access the optional args pointed by va_list, we 

need to use va_arg()

• return the value pointed by the va_list 

pointers

• advances (how much) the pointer to where 

the next optional arg is stored 

• finish up by calling 

stack layout for

va_list pointer the type of optional 

arg to be accessed



CS 4570 | CS 5070: Network Attack Security, Spring 2025

How printf() Access Optional 

Arguments

◼ printf() also uses the stdarg macros

◼ Q: how it know the type of arg?

◼ Q: how it know the end of arg list? 

◼ here, printf() has three (3) optional arguments
◼ elements starting with “%” are called format 

specifiers

◼ printf() scans the format string and prints out 

each character until “%” is encountered
◼ printf() calls va_arg(), which returns the optional 

arg pointed by va_list and advances it to next arg

◼ type? -- type field of format specifier 

• when printf() is called

• all arguments are pushed 

into stack

• when scanning and printing

• replace the 1st format 

specifier % with the value 

from the first optional arg

• the same idea will be 

applied to other args
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Missing Optional 

Arguments

• three (3) format specifiers % vs. two (2) optional args

• cannot be caught by compiler

• at runtime, detecting mismatches require boundary 

marking on the stack

• detecting when it reaches the last optional arg

• printf() uses the # of format specifiers to 

determine the # of optional args

• what if a programmer makes a mistake:  

the # of optional args ≠ the # of format specifiers

• printf() relies on va_arg() to fetch 

optional args from stack

• when va_arg() is called

• the value of arg is fetched

• advance to next arg

• va_arg() doesn’t know whether it 

has reached the end of optional 

args list

• if called again, va_arg() 

continues fetching data from 

stack (even though the data is 

NOT optional arg)Unfortunately, no such marking in the system
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Format String Vulnerability

◼ if there is a mismatch in a format string
◼  

◼ print out incorrect information and cause some problems 

◼ does not pose any severe threat 

◼ it might be true if the mismatch comes from programmer

◼ if a format string comes from malicious users 
◼ the damage can be far worse than what we can expect

◼ format string vulnerability

• print out some data provided by users, user_input

• what if user_input has format specifiers

• correct way: printf(“%s”, user_input);

the # of optional args ≠ the # of format specifiers %

no format specifier
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Format String Vulnerability

◼ if there is a mismatch in a format string
◼  

◼ print out incorrect information and cause some problems 

◼ does not pose any severe threat 

◼ it might be true if the mismatch comes from programmer

◼ if a format string comes from malicious users 
◼ the damage can be far worse than what we can expect

◼ format string vulnerability

• print out some user-provided information, along with data 

generated from program

• users may place some format specifiers in their input

the # of optional args ≠ the # of format specifiers %
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Format String Vulnerability

◼ if there is a mismatch in a format string
◼  

◼ print out incorrect information and cause some problems 

◼ does not pose any severe threat 

◼ it might be true if the mismatch comes from programmer

◼ if a format string comes from malicious users 
◼ the damage can be far worse than what we can expect

◼ format string vulnerability

• in these two examples, user’s input (user_input) 

becomes part of a format string. 

• what will happen if user_input contains format 

specifiers?

the # of optional args ≠ the # of format specifiers %
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Vulnerable Code

◼ vulnerable program
◼ function fmtstr()

◼ take user input

◼ print out the input

• char *fgets(char *str, int n, FILE *stream)
• str: this is the pointer to an array of 

chars where the string read is stored. 

• n: this is the maximum number of 

characters to be read (including the 

final null-character). usually, the length 

of the array passed as str is used. 

• stream: this is the pointer to a FILE 

object that identifies the stream where 

characters are read from.

vulnerable to format string attacks
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Exploiting Format String Vulnerability

◼ Format string vulnerability allows attackers to do a 

wide variety of damages
◼ crash a program

◼ steal secret data from a program

◼ modify a program’s memory

◼ get a program to run attacker’s malicious code

$ gcc –o vul vul.c

$ sudo chown root vul

$ sudo chmod 4755 vul

$ sudo sysctl -w kernel.randomize_va_space=0
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Attack 1: 

Crash Program

◼ printf() does not include any optional argument,

◼ if we put several format specifiers % in the input, we can get 

printf() to advance its va_list pointer to the places beyond the 

printf() function’s stack frame

◼ use input: %s%s%s%s%s%s%s%s

◼ printf() parses the format string
◼ for each %s, it fetches a value where va_list points to and advances 

va_list to the next position

◼ as we give %s, printf() treats the value as address and fetches data 

from that address

◼ if the value is not a valid address, the program crashes
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Vulnerable Code

◼ vulnerable program
◼ function fmtstr()

◼ take user input

◼ print out the input

• char *fgets(char *str, int n, FILE *stream)
• str: this is the pointer to an array of 

chars where the string read is stored. 

• n: this is the maximum number of 

characters to be read (including the 

final null-character). usually, the length 

of the array passed as str is used. 

• stream: this is the pointer to a FILE 

object that identifies the stream where 

characters are read from.

vulnerable to format string attacks

secret value
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Attack 2: 

Print Out Data on the Stack

◼ suppose a variable on the stack contains a secret (constant) and 

we need to print it out
◼ assume that the var variable contains a secret (dynamically 

generated)

◼ use user input: %x.%x.%x.%x.%x.%x.%x.%x
◼ printf() prints out the integer value pointed by va_list pointer and 

advances it by 4 bytes

◼ the number of %x is decided by the distance between the starting 

point of the va_list pointer and the variable

◼ it can be achieved by trial and error
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