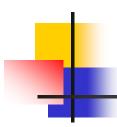
Packet Sniffing and Spoofing


Lecture 01

Instructor: Dr. Cong Pu, Ph.D.

cong.pu@okstate.edu

Acknowledgment: Adapted partially from course materials from Dr. Wenliang Du at Syracuse University, Dr. Fengwei Zhang at Southern University of Science and Technology, and Dr. Steven M. Bellovin at Columbia University.

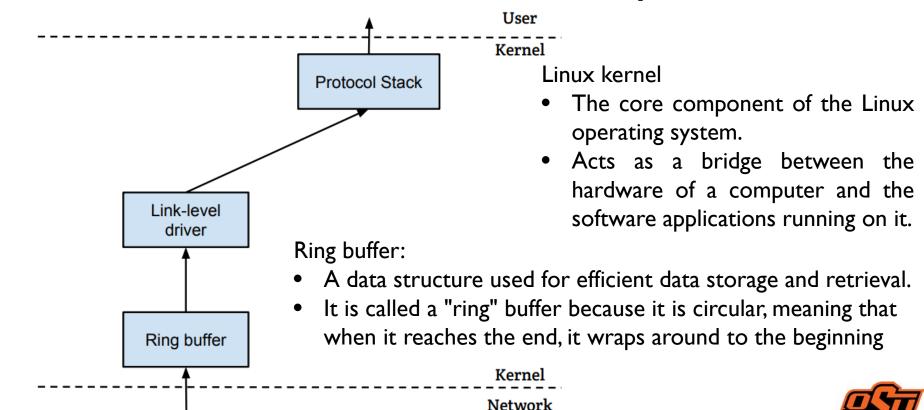
Introduction

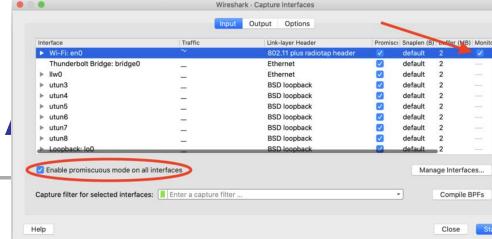
- Two common attacks on networks:
 - sniffing attack
 - eavesdropping on and capturing packets over networks
 - spoofing attack
 - sending out invalid packets with false identification
- sniffing and spoofing are the <u>basis</u> for other network attacks
 - e.g., DNS cache poisoning and TCP session hijacking attacks

- tools for conducting sniffing and spoofing
 - Wireshark (

Netwox Netwox

How Packets Are Received?


- a <u>link</u> (physical or logical) between machine and network
- NIC has a hardware address: MAC address
- Common local comm. techniques: Ethernet and WiFi
 - broadcast medium by nature (or single shared medium)
 - as data (frame) flow in the medium, every NIC "hears" data
 - when frame arrives, it is copied into the memory in the NIC
 - checks des. MAC address in the header
 - if matching with NIC's MAC addr., the frame is copied into kernel buffer
 - interrupts the CPU for new packet
 - CPU copies packet into a queue (making room for other incoming packets)
 - if **not matching**, the frame is discarded



How Packets Are Received? (cont.)

- Common local comm. techniques: Ethernet and WiFi
 - as data (frame) flow in the medium, every NIC "hears" data

How Packets

- promiscuous mode
 - most NIC have this special mode: pass every frame from network to the kernel, regardless of destination MAC add.
 - if registered, the kernel forwards all frames to sniffer program
 - usually require <u>elevated privilege</u>, e.g., root, to use promiscuous mode
- <u>monitor mode</u> (wireless network card)
 - unlike Ethernet, wireless devices suffer interference from other nearby wireless devices
 - to solve this, wireless devices transmit data on <u>different</u>
 <u>channels</u>
 - when NIC is placed in <u>monitor mode</u>, it captures 802.11 frames transmitting on the channel that it is listening to

BSD (Berkeley Software Distribution) Packet Filter (BPF)

- When sniffing, we're interested in certain types of packet
 - e.g.,TCP packets or DNS query packets
- OS can deliver all captured packets to sniffer program, who can discard unwanted packets
 - inefficient and taking time
 - processing and delivering unwanted packets (if large volume)
- Filtering unwanted packets ASAP
 - BSD Packet Filter (BPF): filtering at the lower level
 - allow user-space program attaches a filter to a socket
 - discarding unwanted packets
 - filter: written in human readable format, and interpreted by BSD Pseudo-Machine (packet filtering)
 - ref.: https://www.tcpdump.org/papers/bpf-usenix93.pdf

BPF Filter Examples

- Capture traffic <u>to</u> and <u>from</u> IP host 192.168.1.1
 ip host 192.168.1.1
- Capture traffic <u>from</u> IP host 192.168.1.1
 ip src host 192.168.1.1
- Capture Ethernet packets <u>to</u> and <u>from</u> a host with a <u>MAC address</u> of 00:40:D0:13:35:36

ether host 00:40:D0:13:35:36

Capture Ethernet packets <u>to</u> host 00:40:D0:13:35:36

ether <u>dst</u> 00:40:D0:13:35:36

