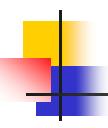
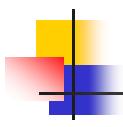
TCP Protocol and Its Attacks


Lecture 07

Instructor: Dr. Cong Pu, Ph.D.

cong.pu@okstate.edu

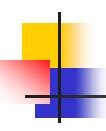
Acknowledgment: Adapted partially from course materials from Dr. Wenliang Du at Syracuse University, Dr. Fengwei Zhang at Southern University of Science and Technology, and Dr. Steven M. Bellovin at Columbia University.



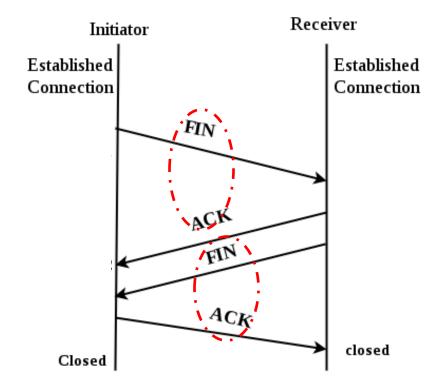
- When making phone call, two typical ways to disconnect
 - two parties say goodbye to each other, then hang up (civilized)
 - one party simply hangs up without saying goodbye (rude)

Rude or civilized, both methods can disconnect phone call.

- For the "civilized" approach, when the end A of a TCP connection has no data to send, it sends out a <u>FIN packet</u> to the other end B.
 - FIN is one of the six code bits in the TCP header
 - after the other end B receives the <u>FIN packet</u>
 - replies an <u>ACK packet</u>
 - the <u>A-to-B direction</u> of connection is closed
 - the B-to-A direction of connection is still open

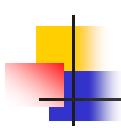


- When making phone call, two typical ways to disconnect
 - I. two parties say goodbye to each other, then hang up (civilized)
 - 2. one party simply hangs up without saying goodbye (rude)


Rude or civilized, both methods can disconnect phone call.

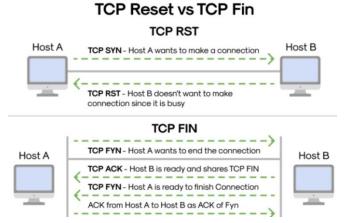
- For the "civilized" approach, when the other end B of a TCP connection has no data to send, it sends out a **FIN packet** to the other end A.
 - FIN is one of the six code bits in the TCP header
 - after the end A receives the FIN packet
 - replies an <u>ACK packet</u>
 - the **B-to-A** direction of connection is closed
 - at this point, the entire TCP connection is closed

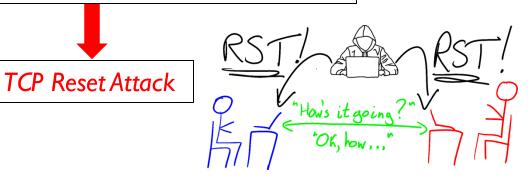
When making phone call, two typical ways to disconnect
 two parties say goodbye to each other, then hang up (civilized)

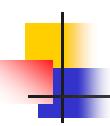


- When making phone call, two typical ways to disconnect
 - I. two parties say goodbye to each other, then hang up (civilized)
 - 2. one party simply hangs up without saying goodbye (rude)

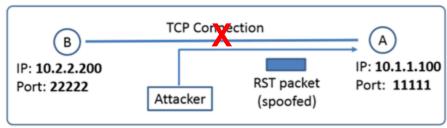
Rude or civilized, both methods can disconnect phone call.

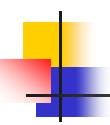

- For the "rude" approach, one end (e.g., A) simply sends a single
 TCP RST packet to the other end (e.g., B)
 - immediately breaking the connection
 - RST is one of the six code bits in the TCP header
 - used for <u>emergency situations</u>, e.g., no time to do <u>FIN</u>
 protocol
 - RST packets ae also sent when errors are detected
 - SYN flooding attacks; spoofed src. IP addr.

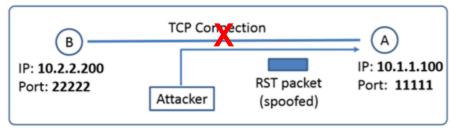



- <u>RST packet</u>: a single packet can <u>CLOSE</u> a TCP connection.
 - perfect candidate for attacks
- If one end can send out an **RST packet** to the other end to break up the connection,

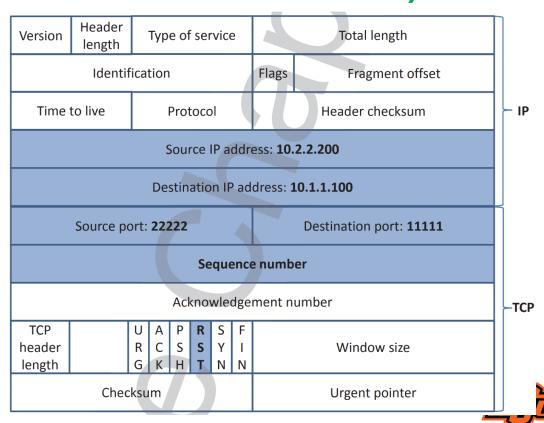
What prevents an attack from sending out exactly the same packet on behalf of either end?

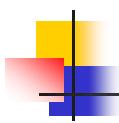





- Idea of TCP Reset Attacks:
 - to break up a TCP connection between two ends, attacker just spoofs a TCP RST packet from one end to the other end

- fill out several fields of IP and TCP headers <u>correctly</u>
 - TCP connection <u>uniquely identified by four values</u>: **src. IP** addr., src. port #, dest. IP addr., and dest. port #
 - those four values need to be <u>same</u> as those used by connection

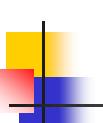

- Idea of TCP Reset Attacks:
 - to break up a TCP connection between two ends, attacker just spoofs a TCP RST packet from one end to the other end



- fill out several fields of IP and TCP headers <u>correctly</u>
 - ensuring data is delivered accurately and in order between a sender and receiver in a network: sequence #
 - otherwise discarded by the receiver
 - valid as long as sequence # is within receiver's

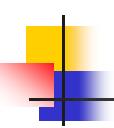
- Idea of <u>TCP Reset Attacks</u>:
 - fill out several fields of IP and TCP headers correctly
 - src. IP addr.
 - src. port #
 - dest. IP addr.
 - dest. port #
 - sequence #

Launching TCP Reset Attacks: Setup


- To gain a first-hand experience on the TCP Reset attacks,
 we launch the attack in the VM
 - if the attacker is <u>not on the same network</u> as either the client or the server, the attack will be quite <u>difficult</u> due to the <u>difficulty of guessing the correct sequence #</u>
 - can be done in practice, but we would like to avoid
 - focusing on the <u>key idea</u> of the TCP Reset attack

- Suppose that your roommates are watching online videos
 - most video streaming sites, e.g., YouTube and Netflix, use TCP
- <u>Attack goal</u>: break your roommates' TCP connections with the video hosting server
 - How: send a <u>TCP RST packet</u> to your roommates' machines
- <u>Attack challenge</u>: sequence number
 - in video streaming connections
 - the sequence number increases very fast due to the high data rate and continuous nature of video data
 - making manual efforts very difficult, if possible at all

- Automate attack: using a program
 - *sniffs* the video streaming packets
 - 2. **get** the sequence number and other essential parameters
 - automatically sends out spoofed TCP RST packets
- Use Scapy to write a Python program
- Environment setup:
 - watch a YouTube video on the VM
 - run the attack program
 - Python program sends out a <u>TCP RST packet</u> for each packet that comes from the VM
 - the spoofed packets will go to the VM
 - resetting all of its connection, including the one with YouTube


Scapy is a powerful, interactive Python library used for network packet manipulation, packet creation, and network analysis.

- We may not be able to see the effect immediately, even if the attack is successful
 - the video players have buffers that store a few seconds of video data ahead of what is currently being played
- Just be patient and you will see something similar to the following

- Python code might be <u>too slow to reset</u> video streaming connections
 - TCP Rest attack needs to use the <u>correct</u> sequence number
 - when there are a lot of traffics
 - if the attack program code does not send out the spoofed
 TCP RST packet in time
 - the sequence number it chooses to use may has already been consumed by other packets
 - the RST packet will be discarded by the receiver

- Another attack strategy: send out spoofed <u>TCP RS7</u>
 <u>packets</u> using a C program
- Netwox tool 78 is such program
 - send out a TCP RST packet for each packet that comes from the VM

\$ sudo netwox 78 --filter "src host xxx.xxx.xxx.xxx"

specifies a filter to match packets coming from a specific source IP address (in this case, xxx.xxx.xxx)

ip address of the target machine

