

 Copyright, Cong Pu

CYBR 435: Cyber Risk
Spring 2022

Lab Assignment #2: Buffer Overflows

• Name only: ____________________________________
• Release date: Feb 03, 2022 (Thursday), 2:00 pm
• Due date: Feb 10, 2022 (Thursday), 2:00pm
• Assignment should be SUBMITTED on Blackboard before Due Date. Other submission

methods will NOT be accepted.
• LATE Submission will NOT Be Accepted on Blackboard since the submission link will be closed

automatically after due date;
o Additional submission for missing answer will NOT Be Accepted.

• It should be done INDIVIDUALLY; Show ALL your work and evidence to support your
answers.

o Answer only without evidence receives half credits.
• Total: 10 pts

Introduction
In this lab, you will learn how buffer overflows and other memory vulnerabilities are used to takeover
vulnerable programs. The goal is to investigate the provided program and then figure out how to use it to
gain shell access to systems.

In 1996 Aleph One wrote the canonical paper on smashing the stack. You should read this as it gives a
detailed description of how stack smashing works. Today, many compilers and operating systems have
implemented security features, which stop the attacks described in the paper. However, it still provides
very relevant background for newer attacks and (specifically) this lab assignment.

Aleph One: Smashing the Stack for Fun and Profit:
https://inst.eecs.berkeley.edu/~cs161/fa08/papers/stack_smashing.pdf

Another (long) description of Buffer Overflows is here:
https://www.win.tue.nl/~aeb/linux/hh/bof-eng.txt

Software Requirements
All required files and source code are packed in the provided Lab 2 virtual machine.
- The VMWare Software
 • https://www.vmware.com/
- The VirtualBox Software
 • https://www.virtualbox.org/wiki/Downloads
 • https://www.vmware.com/support/developer/ovf/
 • https://www.mylearning.be/2017/12/convert-a-vmware-fusion-virtual-machine-to-virtualbox-on-mac/
- The Kali Linux, Penetration Testing Distribution
- GDB: The GNU Project Debugger
- GCC, the GNU Compiler Collection
- C source file including BOF.c, createBadfile.c, and testShellCode.c

https://inst.eecs.berkeley.edu/%7Ecs161/fa08/papers/stack_smashing.pdf
https://www.win.tue.nl/%7Eaeb/linux/hh/bof-eng.txt
https://www.vmware.com/
https://www.virtualbox.org/wiki/Downloads
https://www.vmware.com/support/developer/ovf/
https://www.mylearning.be/2017/12/convert-a-vmware-fusion-virtual-machine-to-virtualbox-on-mac/

 Copyright, Cong Pu

Starting the Virtual Machine
The Kali Linux VM has all the required files. Select the VM named Lab2-BufferOverflows for this lab.

Login the Kali Linux with the username and password [TBA in the class].

In the Kali Linux, you should be able to see a folder named Lab2-BufferOverflows. This folder contains all
of the source code for the lab 2.

Setting up the Environment
There are many protections in current compilers and operating systems to stop stack attacks like the one
we want to do. We have to disable some security options to allow the exploitation to work (Note that
the VM image you get has configured the environment).

Disable Address Space Layout Randomization
Address Space Layout Randomization (ASLR) is a security features used in most Operating System today.
ASLR randomly arranges the address spaces of processes, including stack, heap, and libraries. It provides a
mechanism for making the exploitation hard to success. You can configure ASLR in Linux using the
/proc/sys/kernel/randomize_va_space interface. The following values are supported:

 0 – No randomization

1 – Conservative randomization
2 – Full randomization

 Copyright, Cong Pu

Disable ASLR, run:

$ echo 0 > /proc/sys/kernel/randomize_va_space

Enable ASLR, run:

$ echo 2 > /proc/sys/kernel/randomize_va_space

Note that you will need root privilege to configure the interface. Using vi to modify the interface may
have errors. The screenshot below shows the value of

/proc/sys/kernel/randomize_va_space

However, this configuration will not survive after a reboot. You will have to configure this in sysctl. Add a
file /etc/sysctl.d/01-disable-aslr.conf containing:

kernel.randomize_va_space = 0

This will permanently disable ASLR.

The screenshot below shows you the ASLR configuration. You should open a terminal and try it out.

Set compiler flags to disable security features
When you compile the vulnerable program (explain in the next section) with gcc (C language compiler),
use the following compiler flags to disable the security features.

-z execstack

Turn off the NX (no-execute) protection to make the stack executable

-fno-stack-proector

Remove StackGuard that detects stack smashing exploitations

-g
Enable the debugging symbols

 Copyright, Cong Pu

Overview
The goal of the exploitation is to teach you how buffer overflows work. You must gain a shell by
passing a malicious input into a vulnerable program. The vulnerability takes as input a file named
"badfile". Your job is to create a badfile that results in the vulnerable program producing a shell. Note that
you also have a nop sled to make the vulnerability work even if your shellcode moves by a few bytes. In
the Lab2-BufferOverflows folder, it contains the C files you need to use. The screenshot below shows
that.
(nop sled: https://www.coengoedegebure.com/buffer-overflow-attacks-explained/ (search for “nop sled”
to locate the section “NOP-sled”)

BOF.c
In BOF.c there is an un-bounded strcpy, which means anything that is not null-terminated will overwrite
the buffer boundaries and (hopefully) put some information into the stack that you will design. Your
exploit must work with the provided version of BOF.c (can't change it to make your code work).

https://www.coengoedegebure.com/buffer-overflow-attacks-explained/

 Copyright, Cong Pu

To compile BOF.c, you need to add the compile flags mentioned.

$ gcc –g –z execstack –fno-stack-protector BOF.c –o BOF

testShellCode.c
This program simply lets you test shell code itself. There are a lot of different "shell codes" you can find
or create, and this is a good way to see what they do, and whether they'll work for you (on your
operating system).

The actual shellcode you are using is simply the assembly version of this C code:

int execve(const char *pathname, char *const argv[], char *const envp[]);

execve() executes the program referred to by pathname. This causes the program that is currently being
run by the calling process to be replaced with a new program, with newly initialized stack, heap, and
(initialized and uninitialized) data segments. pathname must be either a binary executable, or a script.

argv is an array of pointers to strings passed to the new program as its command-line arguments. By
convention, the first of these strings (i.e., argv[0]) should contain the filename associated with the file
being executed. The argv array must be terminated by a NULL pointer. (Thus, in the new program,
argv[argc] will be NULL.)

envp is an array of pointers to strings, conventionally of the form key=value, which are passed as the
environment of the new program. The envp array must be terminated by a NULL pointer.

(reference: https://man7.org/linux/man-pages/man2/execve.2.html)

https://man7.org/linux/man-pages/man2/execve.2.html

 Copyright, Cong Pu

createBadfile.c
This program writes out "badfile", however currently it is just full of nops (no ops). You need to modify it
to place your shell code into it and cause the code to jump to the shellcode. The shellcode included
already in badfile (as a char array) does work. You shouldn't need to modify it, but you're welcome to.

 Copyright, Cong Pu

To compile the testShellCode.c and createBadfile.c, you do not need to add the compile flags mentioned
early. You can just simply compile it with gcc

Starting the Exploitation
There are really two challenges in the lab. To execute the shellcode, you want to overwrite the return
address in the bufferOverflow() function. You must make the return address of that function point to
your shellcode.
1. You need to figure out what memory address the return address is stored in.
2. Then you need to figure out the address of your shellcode in memory, and write the shellcode's
address into the return address you found in step 1.

In the lab instruction, I will give you some hints for the step 1.

Finding Return Address on the Stack
In order to find the return address on stacks, we first use GDB, The GNU Project Debugger, to take a
look at the assembly code. You can find more information about GDB from here:
https://www.gnu.org/software/gdb/. Note that you can also use tool, objdump
(https://man7.org/linux/man-pages/man1/objdump.1.html, https://www.thegeekstuff.com/2012/09/objdump-
examples/), to read the assembly code.

$ gdb BOF

First, we disassemble the main() function of the BOF program. We find the bufferOverflow() function in
the main() function (type disas main in the GDB). Then, we disassemble the bufferOverflow() function,
which has a vulnerability in it.

$ (gdb) disas main

$ (gdb) disas bufferOverflow

https://www.gnu.org/software/gdb/
https://man7.org/linux/man-pages/man1/objdump.1.html
https://www.thegeekstuff.com/2012/09/objdump-examples/
https://www.thegeekstuff.com/2012/09/objdump-examples/

 Copyright, Cong Pu

You need to understand the assembly code to find where the return address is on the stack. Next, type
run in the GDB to execute the BOF program.

$ (gdb) run

As we expected, the BOF program generates an exception, segmentation fault. The Instruction Pointer =
(EIP) is 0x90909090. This is because we put NOP sleds on the badfile that overflows the buffer in the
BOF program.

You also can see more register information by execute info register in the GDB

$ (gdb) info register

Note that you can always type help in the GDB to learn the commands.

 Copyright, Cong Pu

Questions for the Lab

Software Requirements
All required tools are packed in the provided Lab 1 virtual machine.

• VMWare Software
o https://www.vmware.com/

• VirtualBox Software
o https://www.virtualbox.org/

The Lab 2 virtual machine can be downloaded from
https://drive.google.com/file/d/1lxkcpB4C11mXYVygo4IKpcieXJfrx6XB/view?usp=sharing
Login the Kali Linux with the username [root] without the brackets, and the passcode [TBA in the class]
without the brackets.

Your submission should be a zip file containing:
1. Your updated createBadfile.c that generates the input for the BOF program. [2.5 pts]
2. A copy of the badfile. This must generate a shell when BOF runs from the command line in the VM.
[2.5 pts]
3. A screenshot of using BOF program to gain a shell (see simple screenshot below). [1 pt]
4. A WORD document with answers to the following questions:
 a. What happens when you compile without “-z execstack”? [1 pt]
 b. What happens if you enable ASLR? [1 pt] Does the return address change? [1 pt]

c. Does the address of the buffer[] in memory change when you run BOF using GDB,
 /home/root/Desktop/Lab2-BufferOverflows/BOF, and ./BOF? [1 pt]

Happy Exploiting!

https://www.vmware.com/
https://www.virtualbox.org/
https://drive.google.com/file/d/1lxkcpB4C11mXYVygo4IKpcieXJfrx6XB/view?usp=sharing

