CYBR 435: Cyber Risk
Spring 2022

Lab Assignment #4: loT Security

Name only:
Release date: Feb 24, 2022 (Thursday), 3:15 pm
Due date: Mar 03, 2022 (Thursday), 2:00 pm
Assignment should be SUBMITTED on Blackboard before Due Date. Other submission
methods will NOT be accepted.
e LATE Submission will NOT Be Accepted on Blackboard since the submission link will be closed
automatically after due date;
0 Additional submission for missing answer will NOT Be Accepted.
e [t should be done INDIVIDUALLY; Show ALL your work and evidence to support your
answers.
0 Answer only without evidence receives half credits.
e Total: 10 pts

Introduction

The Internet of Things (IoT) is an emerging technology that will affect our daily life. It is reported that
there would be 100 billion connected loT devices by 2025, so the impact of loT on will be impressive and
security is an important part. For the purpose of this lab, we will focus on the operating system security
for the loT devices.

There are a number of newly developed operating systems for the loT. For instance, Contiki is an open
source operating system for the Internet of Things. Contiki connects tiny low-cost, low-power
microcontrollers to the Internet. In May 2015, Google announced Brillo, an operating system for the loT.
Brillo is a solution from Google for building connected devices, and it is developed based on the Android
system. Zephyr is another real time operating system that is designed for loT devices. Zephyr open
source project is announced by Linux foundation in February 2016. In this lab, we use Zehpyr as a study
example to explore the OS security of loT devices. Specifically, we will exploit buffer overflow
vulnerabilities in an application and understand the security features of Zephyr OS. After you finish the lab
assignment, you will be expected to answer following questions:

Software Requirements
All required files are packed and configured in the provided virtual machine image.

- The VMWare Software
http://apps.eng.wayne.edu/MPStudents/Dreamspark.aspx

- The Ubuntu 14.04 Long Term Support (LTS) Version
http://www.ubuntu.com/download/desktop

- Zephyr: Real Time OS for loT — A Linux Foundation Collaborative Project
https://www.zephyrproject.org/developer-resources/

Copyright, Cong Pu

http://apps.eng.wayne.edu/MPStudents/Dreamspark.aspx
http://www.ubuntu.com/download/desktop
https://www.zephyrproject.org/developer-resources/

Starting the Lab 3 Virtual Machine

In this lab, we use Ubuntu as our VM image. Select the VM named “Lab6”.
Virtual Machine Library -“ -E A e @@ W B N E -“; = 4
3 B]

Resume Settings Snapshots

+ Fengwei Zhang

Student

ER-ET T LI T

Hard Disks Snapshots W Reclaimable
8.3 68 Otiytes.

Login the Ubuntu image with username student, and password [TBA in the class]. Below is the screen

snapshot after login.
ene ® Lab6

un = A < @@ ® BN B

Ty £ Q) 1:22PM

'

®
=
5
2
-
Ta
=
i

Setting up the Zephyr Development Environment

You can find detailed documents from Zephry Project website: https://www.zephyrproject.org/doc

Download the Zephyr Source Code

The code is hosted at the Linux Foundation with a Gerrit backend that supports anonymous cloning via

git.

Copyright, Cong Pu

https://www.zephyrproject.org/doc

We can check out the Zephyr source code using git command. You can see that the zephyr-project folder
is under the home directory.

https://www.zephyrproject.org/

Note that you need to install git if you want to try it on your own machine. Note that our lab image has
downloaded the Zephyr source code at ~/zephyr-project/

Installing Requirements and Dependencies

If you use your own laptop or desktop to do the lab, you need to install the dependencies by executing
the following command. On our Ubuntu image, | have installed them for you.

$ sudo apt-get install git make gcc gec-multilib g++ g++-multilib
Setting the Project’s Environment Variables

$ cd zephyr-project
$ source zephyr-env.sh

o labé@ubuntu: ~/zephyr-project

lab6@ubuntu:~$ cd zephyr-project
lab6@ubuntu:~/zephyr-projectS source zephyr-env.sh
labé@ubuntu:~/zephyr-projects i

Installing the Zephyr Software Development Kit

Zephyr’'s SDK contains all necessary tools and cross-compilers needed to build the kernel on all
supported architectures. Additionally, it includes host tools such as a custom QEMU and a host compiler
for building host tools if necessary. The SDK supports the following architectures: IA-32, ARM, and ARC.

Next, you need to follow these steps to install the SDK on your Ubuntu Linux VM.

Step |. Download the SDK self-executable script from zephyr website. The image has downloaded the

script; the file name is zephyr-sdk-0.8.2-i686-setup.run. See the screenshot below.
=] : =/zephyr-project
cts s

lab&gubuntu:

Copyright, Cong Pu

https://www.zephyrproject.org/

Step 2. Run the installation script
$ chmod a+x zephyr-sdk-0.8.2-i686-setup.run
$ sudo ./zephyr-sdk-0.8.2-i686-setup.run

The screenshot below shows the executions of step | and 2. We can see that the default directory of
Zephyr SDK is installed at /opt/zephyr-sdk directory. Since | have installed the SDK in the image before,
you will see a message that ask if you want to remove the existing directory /opt/zephyr. Just select yes.

lab6@ubuntu: ~fzephyr-project
/nexus.zephyrproject.org/content/repositories/releases
phyr-sdk-8 -1686-setu
rg/content/re
etup.run

HTTP request nt, awalting response...
Length: 3 61157 (373M) [applicati
Saving t ‘zephyr-sdk-8.
398,661,157 1.61MB/s in 3m 17s

zephyr-sdk-6.8.2-1686-setup.run.1’ saved [398661157 /390661157

fzephyr-sdk-8.8.2-1686-setup.run

Verifying ar | L ty... ALl good.
Uncompressing y 0%
Enter target q f : default: fopt/zephyr-
Installing S |
e directory / yr-s roots will be removed!
you want to contin

Invalid input "", please input ‘'y' or 'n
Installing -
Installing arm tools...
Installing arc tools...
Installing iamcu
Installing C o
Installing nio tools...
Inst i itional host too
i SD0K is ready
~fzephyr-projects

Step 3. To use the Zephyr SDK, export the following environment variables and use the target location
where SDK was installed. You can just add following lines into the

~/.bashrc file.
$ vim ~/.bashrc
Add these two lines into the file

export ZEPHYR_GCC_VARIANT=zephyr
export ZEPHYR_SDK_INSTALL_DIR=/opt/zephyr-sdk

$ source ~/.bashrc

Copyright, Cong Pu

The screenshot below shows the step 3.

zephyr
fopt/zephyr-sdk

Building and Running an Application with Zephyr

You have successfully setup the development environment for Zephyr. This section provides all the steps
to build a Zephyr kernel containing your application and run it. We use the Hello World sample
application as an example. You can also create your own application and run it.

Sample Hello World Application

First, let’s take a look at what a sample application of Zephyr look like. Go the source
directory of the Hello World sample.

$ cd ~/zephyr-project/samples/hello_world/src
$ vim main.c

The screenshot below shows the source code of the Hello World application.

lab6@ubuntu: ~/zephyr-project/samples/hello_world/src

main()

printk(, CONFIG_ARCH);

"main.c” 13L, 211C

Copyright, Cong Pu

Building a Sample Application
To build the Hello World sample application, you can just by executing following commands:

$ cd ~/zephyr-project/samples/hello_world/
$ make

-

labs@ubuntu: ~fzephyr-project/samples/hello_world

lab6@ubuntu:~/zephyr-project/samples/hello_world$

lab6@ubuntu:~/zephyr-project/samples/hello_worlds$
lab6@ubuntu:~/zephyr-project/samples/hello_world$ make.

The above screenshot of make will build the hello_world sample application using the default settings
defined in the application’s Makefile. You can build for a different platform by defining the variable
BOARD with one of the supported platforms, for example:

$ make BOARD=arduino_10I
The screenshot below shows the result after executing $ make BOARD=arduino_ 101

cC
cC
cC
cc
AR
cC
LD
AR

LINK
sIDT
LINK
BIN
make[2]:

The screenshot below shows the supported board by Zephyr project including Intel Galileo Genl and
Gen2. For the purpose of this lab, we will test the application on x86 QEMU. You can also type:

$ make help

This gets a full list of supported boards and other useful commands.

x86 Instruction Set

+ Arduino 101

D2000 CRE

« X86 Emulation (QEMU)

ARM (v7-M and v7E-M) Instruction Set

+ ARM Cortex-M3 Emulation (QEML

e Arduin

reescale FRDM-Ko4F

ue

ARC EM4 Instruction Set

« Arduine 101

Copyright, Cong Pu

The sample projects for the microkernel and the nanokernel are found at ~/zephyrproject/ samples with

each sample having a microkernel and nanokernel specific build. After building an application successfully,

the results can be found in the outdir subdirectory under the application root directory. The ELF binaries
generated by the build system are named by default zephyr.elf. The screenshot below shows listing the

files in the outdir directo
P

labs@ubuntu: ~/zephyr-project/samples/hello_world/outdir

lab6@ubuntu:~/zephyr-project/samples/hello_world$
lab6@ubuntu:~/zephyr-project/samples/hello_worldS
lab6@ubuntu:~/zephyr-project/samples/hello_world$
lab6@ubuntu:~/zephyr-project/samples/hello_worldS$S cd outdir/
'labo@ubuntu ~/zephyr-project/samples/hello_world/outdir$ 1s

1abo@ubuntu.~jzephyr project/samples/hello_world/outdirs [

Running a Sample Application

To perform a rapid testing of the hello world application, we can use QEMU and the x86 emulation board
configuration (qemu_x86) by executing the following command:

$ cd ~/zephyr-project/samples/hello_world

abﬁ@ubuntu.~fzephyr—prc]ectfsamples;hello_worlds
ab6@ubuntu:~/zephyr-project/samples/hello_world$ make BOARD=gemu_x86 qemu
ake[1]: Entering directory ' /home/lab6/zephyr-project'
ake[2]: Entering directory °“/home/lab6/zephyr-project/samples/hello_world/outdi
r/qemu_x86"

Using /home/labé6/zephyr-project as source for kernel

GEN . /Makefile

CHK include/generated/version.h
CHK misc/generated/configs.c
CHK include/generated/offsets.h
CHK misc/generated/sysgen/prj.mdef
o exit from QEMU enter: 'CTRL+a, x'
[QEMU] CPU: gemu32
ello World! x86

The screenshot above shows the execution of the hello world application using QEMU.

We can see the “Hello World!” is printed out in the terminal. To exit QEMU, we can type “Ctrl+a, x
To exit from QEMU enter: 'CTRL+a, x'

[QEMU] CPU: gemu32

*w#++ BOOTING ZEPHYR OS v1.7.99 - BUILD: Mar 14 2017 17:56:10 *++**
Hello World!

QEMU: Termina

/samples fhello_worldfoutdir/qemu_x86"

Copyright, Cong Pu

Exploiting Buffer Overflows in Zephyr Applications

First, let us write a Zephyr application that contains a buffer overflow vulnerability. Change the hello
world main.c program to the following code as shown in the screenshot.

$ gedit main.c

malin.c (~fzephyr-project/samples/hello_world/src) - gedit

!, P open + K save ,g,. #=, Undo L |

main.c X

* Copyright (c) 2812-20814 Wind River Systems, Inc.

* SPDX-License-Identifier: Apache-2.8
*f

#include <zephyr.h>
#include <misc/printk.h>

j #include <string.h=
vold overflow (char *str) {
char buffer[108];
strepy(buffer, str): // Dangerous!

}

int main(void)

{
char *str = "This is a string that is larger than the buffer size, 18%;
overflow(str);
return 1;

}

C+ TabWidth:8 ~ Ln 2, Col 52 INS

From the source code we can see that there is a buffer overflow vulnerability embedded in the overflow()
function. Then, we pass a long string to the overflow() function, the string will overwrite the return
address on the stack and the program would crash because of the invalid return address. Next, let’s
compile the application and run it to see what happens.

As mentioned, to build the application, you can just by executing following commands:

$ cd ~/zephyr-project/samples/hello_world
$ make

To run the application using QEMU and the x86 emulation board configuration (qemu_x86) by executing
the following command:

$ cd ~/zephyr-project/samples/hello_world
$ make BOARD=gemu_x86 qemu

Copyright, Cong Pu

As we expected, the application crashes due to an invalid return address. Furthermore,
0 lab6@ubuntu: ~/zephyr-project/samples/hello_world

CHK n»1ude.gpnv’dtvﬂ;nff'et: h
exit from QEMU enter: 'CTRL+a, X
CPU: gemu32
BOOTING ZEPHYR 05 v1.7.99 BUILD: Mar 14 2017 17:56:10 *ww»w»
fatal: Trying to execute code outside RAM or ROM at Ox7420676e

66161746
= 2 00103168
T6e EFL 000024 -Z-P-] CPL=0 II A2E SMM=0 HLT=0

FEFFFFEF ; DPL=0
FEFFFFff B0 DPL=0
TIFFfrer 380 DPL=0
frfrffrff eocfo30e DPL=0
ffffff“ e FS DPL=G

AmMmmMmmMmmMm
Wi L D

wn

oogoo60e00060 00O

[run] Aborted (core
Leaving di tory " [home/lab6/zephyr-project/samples/hello world/outdir/gemu x86'
#** [sub-make] Error
eaving directo home /[lab6/zephyr-project
#4¢ [gemu] Error
lab6@ubuntu:~/zephyr-project/samples/hello_worlds

Furthermore, QEMU also crashes and you will see a pop-up window as the screenshot below.

Sorry, the application gemu-system-i386 has stopped unexpectedly.

If you notice Further problems, try restarting the computer.

Send an error report to help fix this problem

Show Details Continue

We can see that the EIP register has the value 0x7420676e. In order to execute something meaningful
after exploiting a buffer overflow vulnerability, we need to control the EIP register. Next, adjust the input
string in the main.c to change the EIP register to 0x41414141. Note that 0x41 is the ASCII value of
Icharacter ‘A’. We can just simply edit the main() function as the screenshot below
int main (void) {
char *str = "AA" ;
overflow(str);

return 1;

Copyright, Cong Pu

To re-compile the application, you need to re-run the zephyr environment script zephyrevn.sh.

$ cd ~/zephyr-project
$ source ./zephyr-env.sh

Then you can re-compile the application and run it. You will see the EIP register will be 0x41414141 as
the screenshot below.

fatal: Trying to execute code outside RAM or ROM at 6x41414141

60 EDX=08181748
i EBP=41414141 ESP=001083148
Z-P-] CPL=0 II=0 A20=1 SMM=0 HLT=0
ES =0810 80088888 FFFFFffff B¢ DPL=8 D [-WA]
C fEFfffff eecfobod DPL=O 2 [-RA]
FFFFffff @bcf9308 DPL=0 [-HWA]
FEEFffff obcfo308 DPL=0 [-WA]
FEFFFFff @8cf9308 DPL=O [-HA]
frffffff abdc) DPL=0 [-WA]
gogpoaee eeaerfrfr 8 DPL=B

i~
2 ™
A

v LA
2
(LT

W

o

LT

=2

v A

- busy
801800
8161310

CRG=080008 CRZ=00080060 CR3=D080008000 CR4=00000000
D DR1 DR2 060 alols :

=2

2 @D

(=]

) il
*** [run] Aborted (c _
Leaving directoery " /home/lab6/zep project/samples /hello world/foutdin

**% [cub-make] Error 2
Leaving d ctory ~fhome/labt/zephyr-project’
**% [gemu] Error 2
s@ubuntu:-/zephyr-project/samples/hello_world$ | |

gemu: fatal: Trying to execute code outside RAM or ROM at 0x41414141

EAX=00104ble EBX=00000000 ECX=00101f3c EDX=00101f0e
ESI=00000000 EDI=00000000 EBP=41414141 ESP=00104b30
EIP=41414141 EFL=00000246 [---Z-P-] CPL=0 II=0 A20=1 SMM=0 HLT=0

CC —_Aandn Aananannn FRFRFFFFFF aa~FOo2an NNl & ne r wa’l
To re-compile the application, you need to re-run the zephyr environment script zephyrevn.sh.

$ cd ~/zephyr-project
$ source ./zephyr-env.sh

Copyright, Cong Pu

Application Stack Frame on Zephyr

To do more meaningful things such as executing shell code on the stack, we need to understand the
application’s stack frame. We have done the similar tasks in the Lab 2. As mentioned, for each Zephyr
application, the compilation binaries are stored in a directory called outdir. We can just go to that
directory and use objdump tool to disassembly the application binary and understand its stack frame.

$ cd ~/zephyr-project/samples/hello_world/outdir/qemu_x86/src
$ objdump —d main.o

The screenshot below shows the disassembly result of main.o binary.

lab6@ubuntu: ~/zephyr-project/samples/hello_world/outdir/qemu_x86/src

lab6@ubuntu:~/zephyr-project/samples/hello_world/outdir/qemu_x86S cd src/
lab6@ubuntu:~/zephyr-project/samples/hello_world/outdir/qemu_x86/src$ 1s
built-in.o main.o
lab6@ubuntu:~/zephyr-project/samples/hello world/outdir/qemu x86/srcS objdump -
main.o

main.o: file format elf32-1386

Disassembly of section .text._k mem_pool_quad block_size define:

00000000 <k mem pool quad block size define>:
0: 55 push %ebp
89 e5 mov %esp,%ebp

2 I
33 5d pop %ebp
4: 3 ret

Disassembly of section .text.main:

00000000 <main>:
- 55 push %ebp
89 e5s mov %esp,%ebp
68 00 00 0O 0O push SOx0
68 64 00 00O 00 push SOx4
e8 fc ff ff ff call e <main+0Oxe>
12: 58 pop %eax
13: 5a pop %edx
14: c9 leave
153 e ret
lab6@ubuntu:~/zephyr-project/samples/hello_world/outdir/qemu_x86/src$

Copyright, Cong Pu

Questions for the Lab

Software Requirements
All required tools are packed in the provided Lab 4 virtual machine.
e VMWare Software
0 https://www.vmware.com/
e VirtualBox Software
O https://www.virtualbox.org/
The Lab 4 virtual machine can be downloaded from https://livemarshall-
my.sharepoint.com/:u:/g/personal/puc_marshall_edu/EdaMTd4EYh]JilwraEo0qB8BilGoS3zcgX-
LeXmIRCx1GA?e=]IFfp5 (ignore the file name “Lab6-Partl”)
Login the Kali Linux with the username [Student] without the brackets, and the passcode [TBA in the
class] without the brackets.

I. Read the lab instructions above and finish all the tasks. [2 pts]
2. Answer the questions in the Introduction section, and justify your answers. Simple yes or no answer
will not get any credits.

a. What security features does Zephyr have! [| pt]

b. Do applications share the same address space with the OS kernel? [2 pts]

c. Does Zephyr have defense mechanisms such as non-executable stack or Address Space Layout

Randomization (ASLR)? [2 pts]

d. Do buffer overflow attack work on Zephyr? [pt]
3. Change the EIP register to the value Oxdeadbeef, and show me the screenshot of the EIP value when
the application crashes. [2 pts]

Happy Hacking!

Copyright, Cong Pu

https://www.vmware.com/
https://www.virtualbox.org/
https://livemarshall-my.sharepoint.com/:u:/g/personal/puc_marshall_edu/EdaMTd4EYhJJilwraEo0qB8BilGoS3zcgX-LtXm1RCx1GA?e=JlFfp5
https://livemarshall-my.sharepoint.com/:u:/g/personal/puc_marshall_edu/EdaMTd4EYhJJilwraEo0qB8BilGoS3zcgX-LtXm1RCx1GA?e=JlFfp5
https://livemarshall-my.sharepoint.com/:u:/g/personal/puc_marshall_edu/EdaMTd4EYhJJilwraEo0qB8BilGoS3zcgX-LtXm1RCx1GA?e=JlFfp5

