

 Copyright, Cong Pu

CYBR 435: Cyber Risk
Spring 2022

Lab Assignment #6: Dirty-COW Attack

• Name only: ____________________________________
• Release date: Mar 10, 2022 (Thursday), 2:00 pm
• Due date: Mar 24, 2022 (Thursday), 2:00 pm
• Assignment should be SUBMITTED on Blackboard before Due Date. Other submission

methods will NOT be accepted.
• LATE Submission will NOT Be Accepted on Blackboard since the submission link will be closed

automatically after due date;
o Additional submission for missing answer will NOT Be Accepted.

• It should be done INDIVIDUALLY; Show ALL your work and evidence to support your
answers.

o Answer only without evidence receives half credits.
• Total: 10 pts
• The Lab is adopted from Dr. Wenliang Du at Syracuse University.

Overview

The Dirty COW vulnerability is an interesting case of the race condition vulnerability. It existed in the
Linux kernel since September 2007, and was discovered and exploited in October 2016. The vulnerability
affects all Linux-based operating systems, including Android, and its consequence is very severe: attackers
can gain the root privilege by exploiting the vulnerability. The vulnerability resides in the code of copy-on
-write inside Linux kernel. By exploiting this vulnerability, attackers can modify any protected file, even
though these files are only readable to them.

The objective of this lab is for students to gain the hands-on experience on the Dirty COW attack,
understand the race condition vulnerability exploited by the attack, and gain a deeper understanding of
the general race condition security problems. In this lab, students will exploit the Dirty COW race
condition vulnerability to gain the root privilege.

Lab Environment

This lab has been tested on our pre-built Ubuntu 12.04 VM
(https://seedsecuritylabs.org/Labs_20.04/Software/Dirty_COW/), which can be downloaded from the
SEED website. If you are using our SEED Ubuntu 16.04 VM, this attack will not work, because the
vulnerability has already been patched in the kernel. You can download the SEED Ubuntu12.04 VM from
the SEED web site. If you have an Amazon EC2 account, you can find our VM from the “Community
AMIs”. The name of the VM is SEEDUbuntu12.04-Generic. It should be noted that Amazon’s site says that
this is a 64-bit VM; that is incorrect. The VM is 32-bit. However, this incorrect information does not
cause any problem.

Task 1: Modify a Dummy Read-Only File

The objective of this task is to write to a read-only file using the Dirty COW vulnerability.

Create a Dummy File

We first need to select a target file. Although this file can be any read-only file in the system, we will use a
dummy file in this task, so we do not corrupt an important system file in case we make a mistake. Please
create a file called zzz in the root directory, change its permission to read-only for normal users, and put
some random content into the file using an editor such as gedit.

https://seedsecuritylabs.org/Labs_20.04/Software/Dirty_COW/

 Copyright, Cong Pu

From the above experiment, we can see that if we try to write to this file as a normal user, we will fail,
because the file is only readable to normal users. However, because of the Dirty COW vulnerability in
the system, we can find a way to write to this file. Our objective is to replace the pattern "222222" with
"******".

Set Up the Memory Mapping Thread

You can download the program cow attack.c from the website of the lab
(https://seedsecuritylabs.org/Labs_20.04/Software/Dirty_COW/). The program has three threads: the
main thread, the write thread, and the madvise thread. The main thread maps /zzz to memory, finds
where the pattern "222222" is, and then creates two threads to exploit the Dirty COW race condition
vulnerability in the OS kernel.

https://seedsecuritylabs.org/Labs_20.04/Software/Dirty_COW/

 Copyright, Cong Pu

In the above code, we need to find where the pattern "222222" is. We use a string function called strstr()
to find where "222222" is in the mapped memory (Line 1). We then start two threads: madviseThread
(Line 2) and writeThread (Line 3).

Set Up the write Thread

The job of the write thread listed in the following is to replace the string "222222" in the memory with
"******". Since the mapped memory is of COW type, this thread alone will only be able to modify the
contents in a copy of the mapped memory, which will not cause any change to the underlying /zzz file.

Set Up The madvise Thread

The madvise thread does only one thing: discarding the private copy of the mapped memory, so the page
table can point back to the original mapped memory.

Launch the Attack

If the write() and the madvise() system calls are invoked alternatively, i.e., one is invoked only after the
other is finished, the write operation will always be performed on the private copy, and we will never be
able to modify the target file. The only way for the attack to succeed is to perform the madvise() system
call while the write() system call is still running. We cannot always achieve that, so we need to try many
times. As long as the probability is not extremely low, we have a chance. That is why in the threads, we
run the two system calls in an infinite loop. Compile the cow attack.c and run it for a few seconds. If your
attack is successful, you should be able to see a modified /zzz file.

 Copyright, Cong Pu

Task 2: Modify the Password File to Gain the Root Privilege

Now, let’s launch the attack on a real system file, so we can gain the root privilege. We choose the
/etc/passwd file as our target file. This file is world-readable, but non-root users cannot modify it. The file
contains the user account information, one record for each user. Assume that our user name is seed. The
following lines show the records for root and seed:

Each of the above record contains seven colon-separated fields. Our interest is on the third field, which
specifies the user ID (UID) value assigned to a user. UID is the primary basis for access control in Linux,
so this value is critical to security. The root user’s UID field contains a special value 0; that is what makes
it the superuser, not its name. Any user with UID 0 is treated by the system as root, regardless of what
username he or she has. The seed user’s ID is only 1000, so it does not have the root privilege. However,
if we can change the value to 0, we can turn it into root. We will exploit the Dirty COW vulnerability to
achieve this goal.

In our experiment, we will not use the seed account, because this account is used for most of the SEED
experiments; if we forget to change the UID back after the experiment, other experiments will be
affected. Instead, we create a new account called charlie, and we will turn this normal user into root using
the Dirty COW attack. Adding a new account can be achieved using the adduser command. After the
account is created, a new record will be added to /etc/passwd. See the following:

We suggest that you save a copy of the /etc/passwd file, just in case you make a mistake and corrupt this
file. An alternative is to take a snapshot of your VM before working on this lab, so you can always roll
back if the VM got corrupted.

Task:

You need to modify the charlie’s entry in /etc/passwd, so the third field is changed from 1001 to 0000,
essentially turning charlie into a root account. The file is not writable to charlie, but we can use the Dirty
COW attack to write to this file. You can modify the cow attack.c program from Task 1 to achieve this
goal.

After your attack is successful, if you switch user to charlie, you should be able to see the # sign at the
shell prompt, which is an indicator of the root shell. If you run the id command, you should be able to see
that you have gained the root privilege.

 Copyright, Cong Pu

Questions for the Lab

Your submission should include the following:

1. A WORD file containing
• Carefully read the lab instructions and finish all steps (a sequence of screenshots) in

Task 1. Take the screenshot of results.
• Carefully read the lab instructions and finish all steps (a sequence of screenshots) in

Task 2. Take the screenshot of results and explain how you are able to achieve the goal
of Dirty-COW attack.

2. Source codes of Task 1 and Task 2

