

 Copyright, Cong Pu

CYBR 435: Cyber Risk

Spring 2022

Lab Assignment #8: SQL Injection Attack

• Name only: ____________________________________

• Release date: Apr 07, 2022 (Thursday), 2:00 pm

• Due date: Apr 14, 2022 (Thursday), 2:00 pm

• Assignment should be SUBMITTED on Blackboard before Due Date. Other submission

methods will NOT be accepted.

• LATE Submission will NOT Be Accepted on Blackboard since the submission link will be closed

automatically after due date;

o Additional submission for missing answer will NOT Be Accepted.

• It should be done INDIVIDUALLY; Show ALL your work and evidence to support your

answers.

o Answer only without evidence receives half credits.

• Total: 20 pts (Lab Assignment #8 will be counted 10 pts. But you will be given 20 pts if you finish it

correctly and completely. The extra 10 pts are provided for you to make up the lost points from

previous lab assignments.)

• The Lab is adopted from Dr. Wenliang Du at Syracuse University.

Overview

SQL injection is a code injection technique that exploits the vulnerabilities in the interface between web

applications and database servers. The vulnerability is present when user’s inputs are not correctly

checked within the web applications before being sent to the back-end database servers.

Many web applications take inputs from users, and then use these inputs to construct SQL queries, so

they can get information from the database. Web applications also use SQL queries to store information

in the database. These are common practices in the development of web applications. When SQL queries

are not carefully constructed, SQL injection vulnerabilities can occur. SQL injection is one of the most

common attacks on web applications.

In this lab, we have created a web application that is vulnerable to the SQL injection attack. Our web

application includes the common mistakes made by many web developers. Students’ goal is to find ways to

exploit the SQL injection vulnerabilities and demonstrate the damage that can be achieved by the attack.

This lab covers the following topics:

• SQL statements: SELECT and UPDATE statements

• SQL injection

Lab Environment

This lab has been tested on the SEED Ubuntu 20.04 VM. You can download a pre-built image from the

SEED website (https://seedsecuritylabs.org/Labs_20.04/Web/Web_SQL_Injection/), and run the SEED VM

on your own computer. However, most of the SEED labs can be conducted on the cloud, and you can

follow our instruction to create a SEED VM on the cloud.

Lab Environment

We have developed a web application for this lab, and we use containers to set up this web application.

There are two containers in the lab setup, one for hosting the web application, and the other for hosting

the database for the web application. The IP address for the web application container is 10.9.0.5, and The

URL for the web application is the following:

https://seedsecuritylabs.org/Labs_20.04/Web/Web_SQL_Injection/

 Copyright, Cong Pu

We need to map this hostname to the container’s IP address. Please add the following entry to the

/etc/hosts file. You need to use the root privilege to change this file (using sudo). It should be noted that

this name might have already been added to the file due to some other labs. If it is mapped to a different

IP address, the old entry must be removed.

Container Setup and Commands

Please download the Labsetup.zip file (https://seedsecuritylabs.org/Labs_20.04/Web/Web_SQL_Injection/)

to your VM from the lab’s website, unzip it, enter the Labsetup folder, and use the docker-compose.yml

file to set up the lab environment. Detailed explanation of the content in this file and all the involved

Dockerfile can be found from the user manual, which is linked to the website of this lab. If this is the first

time you set up a SEED lab environment using containers, it is very important that you read the user

manual.

In the following, we list some of the commonly used commands related to Docker and Compose. Since

we are going to use these commands very frequently, we have created aliases for them in the .bashrc file

(in our provided SEEDUbuntu 20.04 VM).

All the containers will be running in the background. To run commands on a container, we often need to

get a shell on that container. We first need to use the "docker ps" command to find out the ID of the

container, and then use "docker exec" to start a shell on that container. We have created aliases for them

in the .bashrc file.

If you encounter problems when setting up the lab environment, please read the “Common Problems”

section of the manual for potential solutions.

https://seedsecuritylabs.org/Labs_20.04/Web/Web_SQL_Injection/

 Copyright, Cong Pu

MySQL Database

Containers are usually disposable, so once it is destroyed, all the data inside the containers are lost. For

this lab, we do want to keep the data in the MySQL database, so we do not lose our work when we

shutdown our container. To achieve this, we have mounted the mysql data folder on the host machine

(inside Labsetup, it will be created after the MySQL container runs once) to the /var/lib/mysql folder

inside the MySQL container. This folder is where MySQL stores its database.

Therefore, even if the container is destroyed, data in the database are still kept. If you do want to start

from a clean database, you can remove this folder.

About the Web Application

We have created a web application, which is a simple employee management application. Employees can

view and update their personal information in the database through this web application. There are mainly

two roles in this web application: Administrator is a privilege role and can manage each individual

employees’ profile information; Employee is a normal role and can view or update his/her own profile

information. All employee information is described in Table 1.

Task 1: SQL Injection Attack on SELECT Statement

SQL injection is basically a technique through which attackers can execute their own malicious SQL

statements generally referred as malicious payload. Through the malicious SQL statements, attackers can

steal information from the victim database; even worse, they may be able to make changes to the

database. Our employee management web application has SQL injection vulnerabilities, which mimic the

mistakes frequently made by developers.

We will use the login page from www.seed-server.com for this task. The login page is shown in Figure 1.

It asks users to provide a user name and a password. The web application authenticate users based on

these two pieces of data, so only employees who know their passwords are allowed to log in. Your job,

as an attacker, is to log into the web application without knowing any employee’s credential.

 Copyright, Cong Pu

To help you started with this task, we explain how authentication is implemented in the web application.

The PHP code unsafe home.php, located in the /var/www/SQL_Injection directory, is used to conduct

user authentication. The following code snippet show how users are authenticated.

The above SQL statement selects personal employee information such as id, name, salary, ssn etc from

the credential table. The SQL statement uses two variables input uname and hashed pwd, where input

uname holds the string typed by users in the username field of the login page, while hashed pwd holds the

sha1 hash of the password typed by the user. The program checks whether any record matches with the

provided username and password; if there is a match, the user is successfully authenticated, and is given

the corresponding employee information. If there is no match, the authentication fails.

Task 1.1: SQL Injection Attack from Webpage

Your task is to log into the web application as the administrator from the login page, so you can see the

information of all the employees. We assume that you do know the administrator’s account name which

is admin, but you do not the password. You need to decide what to type in the Username and Password

fields to succeed in the attack.

Task 1.2: SQL Injection Attack from Command Line

 Copyright, Cong Pu

Your task is to repeat Task 1.1, but you need to do it without using the webpage. You can use command

line tools, such as curl, which can send HTTP requests. One thing that is worth mentioning is that if you

want to include multiple parameters in HTTP requests, you need to put the URL and the parameters

between a pair of single quotes; otherwise, the special characters used to separate parameters (such as &)

will be interpreted by the shell program, changing the meaning of the command. The following example

shows how to send an HTTP GET request to our web application, with two parameters (username and

Password) attached:

If you need to include special characters in the username or Password fields, you need to encode them

properly, or they can change the meaning of your requests. If you want to include single quote in those

fields, you should use %27 instead; if you want to include white space, you should use %20. In this task,

you do need to handle HTTP encoding while sending requests using curl.

Task 2: SQL Injection Attack on UPDATE Statement

If a SQL injection vulnerability happens to an UPDATE statement, the damage will be more severe,

because attackers can use the vulnerability to modify databases. In our Employee Management application,

there is an Edit Profile page (Figure 2) that allows employees to update their profile information, including

nickname, email, address, phone number, and password. To go to this page, employees need to log in first.

When employees update their information through the Edit Profile page, the following SQL UPDATE

query will be executed. The PHP code implemented in unsafe edit backend.php file is used to update

employee’s profile information. The PHP file is located in the /var/www/SQLInjection directory.

 Copyright, Cong Pu

Task 2.1: Modify Your Own Salary

As shown in the Edit Profile page, employees can only update their nicknames, emails, addresses, phone

numbers, and passwords; they are not authorized to change their salaries. Assume that you (Alice) are a

disgruntled employee, and your boss Boby did not increase your salary this year. You want to increase

your own salary by exploiting the SQL injection vulnerability in the Edit-Profile page. Please demonstrate

how you can achieve that. We assume that you do know that salaries are stored in a column called salary.

Task 2.2: Modify Other People’ Salary

After increasing your own salary, you decide to punish your boss Boby. You want to reduce his salary to

1 dollar. Please demonstrate how you can achieve that.

Task 2.3: Modify Other People’ Password

After changing Boby’s salary, you are still disgruntled, so you want to change Boby’s password to

something that you know, and then you can log into his account and do further damage. Please

demonstrate how you can achieve that. You need to demonstrate that you can successfully log into

Boby’s account using the new password. One thing worth mentioning here is that the database stores the

hash value of passwords instead of the plaintext password string. You can again look at the unsafe edit

backend.php code to see how password is being stored. It uses SHA1 hash function to generate the hash

value of password.

Questions for the Lab

Your submission should include the following:

1. A WORD file containing the screenshot along with action explanation for the following

tasks

• Task 1.1: SQL Injection Attack from Webpage [2 pts]

• Task 1.2: SQL Injection Attack from Command Line [2 pts]

• Task 2.1: Modify Your Own Salary [2 pts]

• Task 2.2: Modify Other People’ Salary [2 pts]

• Task 2.3: Modify Other People’ Password [2 pts]

Happy Hacking!

