Packet Sniffing

Lecture |
Instructor: C. Pu (Ph.D., Assistant Professor)

puc@marshall.edu

Introduction

two common attacks on networks:

|
o sniffing attack
o adversary monitors physical network and captures packets
0 spoofing attack
g adversary issues invalid packets with false identity
= sniffing and spoofing are the basis for other attacks

o e.g., DNS cache poisoning, TCP session hijacking

DNS uncached response

“"What's IPf “What's the IPf
ampl e.com? mple.com?

DNS cached response

"What's the IP for example.com?”

ex; exal

"
/

"192.0.0.16" (Cached)

M

Ist User DNS server

uthoritative ser
j/ eeeeeeeeee J

exampl example.com
IP addre: 192 O 016 IP address: 192.0.0.16

= =]

DNS server

Introd UCtiOI‘I o Server ™

TCP session hijacking

S —
Session ID=ACF3D35F216AAEFC Session ID=ACF3D35F216AAEFC
[- -
i\ = i1 b e
N

Victim Sniffing a Web Victim) (;ﬁofi‘f“”' Web
_ Server

- -

Attacker Attacker

two common attacks on networks:
sniffing attack
o adversary monitors physical network and captures packets
spoofing attack
g adversary issues invalid packets with false identity
sniffing and spoofing are the basis for other attacks
e.g., DNS cache poisoning, TCP session hijacking

DNS Cache Poisoning Process

/ DNS server ‘\

"What's the IP for
example.com?”

-8

Attacker

Poisoned DNS Cache

“What's the IP for
example.com?”

"What's the IP for
example.com?” \

_/

["192.0017" | L I
2. "192.0.016" » _(Cached)
< <
Authoritative User DNS server
nameserver
"Hey, | am an
authoritative
eeeeeeeeee
IP address is
192.0.0.17" - .
example.com Malicious website

IP address: 192.0.0.16

=]

IP address: 192.0.0.17

el

Introduction (cont.)

packet sniffing: common attack on network
o adversary eavesdrops on a physical network (wires or
wireless), and capture the packets transmitted over networks
= the basis for other Internet attacks, e.g., DNS cache poisoning
attack, TCP session hijacking attack
o available tools: Wireshark, netwox, and Scapy

0

WIRESHARK

https://www.wireshark.org/ http://ntwox.sourceforge.net/ https://scapy.net/

How Packets Are Received?

function
calls

network interface card (NIC)

a link (physical or logical) between a machine and a network
o connecting machines to networks

has a hardware address: MAC address

common local comm. techniques: Ethernet and WiFi

<

use broadcast medium (or single shared medium)

as data (frame) flow via the medium, every NIC can hear
d when frame arrives, it is copied into the memory in the NIC
checks des. MAC address in the header
if match with NIC’s MAC add., the frame is copied into

kernel buffer
. interrupts the CPU for new packet

. CPU copies packet into a queue
\ if not match, the frame is discarded 'M’

[] Wireshark - Capture Interfaces

m Output Options

\\\\\ face Tratfic Link-layer Header Promisct Snaplen (B

Thunderbolt Bridge: bridge0 usmmapheme' default
» IO o Ethernet default 2
tun3 — BSD loopback default 2
> vt - 250 oopack catutt 2
How Packets. :: . E= &
mbiopbackelol - O "
@nromiscunus mode on a\l@ Manage Interfaces...
promiscuous mode e N
0 most NIC have this special mode: pass every frame from
network to the kernel, regardless of destination MAC add.
o if registered, the kernel forwards all frames to sniffer program

g usually require elevated privilege, e.g., root, to use promiscuous
mode
monitor mode (wireless)
unlike Ethernet, wireless devices suffer interference from
other nearby wireless devices
to solve this, wireless devices transmit data on different
channels
when NIC is placed in monitor mode, it captures 802.1 |
frames transmitting on the channel that it is listening to
el

BSD (Berkeley Software
Distribution) Packet Filter (BPF)

when sniffing, we're interested in certain types of packet
e.g., TCP packets or DNS query packets

the system can deliver all captured packets to sniffer

program, who can discard unwanted packets

very inefficient and taking time
o processing and delivering unwanted packets (if large volume)

filtering unwanted packets ASAP
BSD Packet Filter (BPF): filtering at the lower level
user-space program attaches a filer to a socket
: discarding unwanted packets
filter: written in human readable pseudo-code, and interpreted
by BSD Pseudo-Machine (packet filteing) S

BPF Filter Examples

capture traffic to and from IP host 192.168.1.1
ip host 192.168.1.1

capture traffic from IP host 192.168.1.1
ip src host 192.168.1.1

capture Ethernet packets to and from a host with a MAC address
of 00:40:D0:13:35:36

ether host 00:40:D0:13:35:36
capture Ethernet packets to host 00:40:D0:13:35:36
ether dst 00:40:D0:13:35:36

BSD (Berkeley Software
Distribution) Packet Filter (BPF)
(cont.)

BPF Overview: interacting with system

Reverse Address Resolution
Protocol (RARP) daemon

link=level link=level link=level
driver driver driver

network

packet arrives

BSD Packet Filter (BPF) (cont.)

an example of a compiled BPF code

struct sock_filter code[] =

{
{
{
{
{
{
{
{
{
{
{
{

i

|
0x28, 0,
0x30, 0,
0x15, 1,
0x28, O,
0x28, O,
0x15, 0,
0x1s5, 2,
0x15, 0,
0x45, 6,
0x48, O,
0x48, 0,
0x06, O,

0,
0,
0,
0,
0,
12,
0,
8,
0,
0,
0,
0,

struct sock_fprog

.len = ARRAY S

filter =

code,

0x0000000¢c
0x00000014
0x00000008
0x00000036
0x00000038
0x00000800
0x00000084
0x00000011
0x00001£££
0x0000000e
0x00000010
OxDO0D0EEEE

bpf = {

IZE (code),

{

0x15, 0O,
0x15, 2,
0x15, 0,
0x15, 14,
0x1S, 12
0x30, 0O,
0x15, 1,
0x28, 0,
0xbl, O,
0x15, 2,
0x15, 0
0x06, O

8,
0,

17

r

0,

13

r

0,
0,
0,

== o O

r

0x00008edd
0x00000084
0x00000011
0x00000016
0x00000016
0x00000017
0x000000086
0x00000014
0x0000000e
0x00000016
0x00000016
0x00000000

these two parameters are used to pass
data used by a particular command

a pointer to the buffer in
which the value for the
requested option is specified

the size, in bytes, of the buffer

m attaching a compiled BPF code to a socket shrough /

setsockopt(sock, SOL SOCKET, SO _ATTACH_FILTER, &bpf, sizeof(bpf))

/

a descriptor that identifies a socket

reference:

https://docs.microsoft.com/en-us/windows/win32/api/winsock/nf-winsock-setsockopt

option level

N\

socket option

https://docs.microsoft.com/en-us/windows/win32/api/winsock/nf-winsock-setsockopt

Packet Sniffing

packet sniffing: capturing live data as they flow across

network
understand network characteristics
diagnose faulty networks and configurations
reconnaissance and exploitation

packet sniffing tools = packet sniffers

Receiving Packets Using Sockets

(udp_server.c)
socket type (e.g., datagram socket)

= UDP server program return socket

protocol type (e.g., UDP)

create // Step @ descriptor
Socket int sock = socket (AF_INET, SOCK_DGRAM, IPPROTO_UDP);
_ protocol family (e.g., IPv4)
// Step @
memset ((char *) &server, 0, sizeof (server)); fill a block of memory
provide server.sin family = AF_INET; with a particular value
. . server.sin addr.s addr = htonl (INADDR ANY);
information server.sin_port = htons(9090);

about server

if (bind(sock, (struct sockaddr *) &server, sizeof(server)) < 0)
error ("ERROR on binding");
assigns a local protocol address (IP + port #) to a socket
// Step @
reile erase data in buf
receive bzero(buf, 1500);
recvirom(sock, buf, 1500-1, O,
(struct sockaddr %) &client, &clientlen);
printf ("%s\n", buf);

}
n reference: IM
https://www.tutorialspoint.com/unix_sockets/socket core functions.htm

packets

https://www.tutorialspoint.com/unix_sockets/socket_core_functions.htm

Packet Sniffing Using Raw Sockets

m issue in the previous program: receiving packets that are

intended for it
n if the des. IP add. or the des. port # is not matching, no
packets are captured

= what we want: capturing all packeting flowing on the cable,

regardless of the des. IP or port #

0 raw socket
o allows access to the underlying transport provider
o allows user to send and obtain packets of information from the
network without interacting with OS

ol

Packet Sniffing Using Raw Sockets

m packet capture using raw socket
* normal socket

protocol family creating a raw socket kernel receives packet

(e.g., IPv4) ﬂ
// Create the raw socket
int sock = socket (AF_PACKET, SOCK RAW, htons(ETH_ P _ALL)); @ pass packet through protocol stack
// Turn on the promiscuous mode. ll
mr.mr_type = PACKET MR PROMISC; @ pass to appllcatlons
setsockopt (sock, SOL PACKET, PACKET ADD_MEMBERSHIP, smr, @

sizeof (mr));

// Getting captured packets e raw socket
while (1) ({ k I [K
int data size=recvfrom(sock, buffer, PACKET LEN, 0, @ ernelreceives pac et

&saddr, (socklen t«)sizeof (saddr)); ll

if(data_size) printf("Got one packet\n");
} pass a copy of packet to socket

ol

Packet Sniffing Using Raw Sockets

m packet capture using raw socket

capture all types of packets

// Create the raw socket
int sock = socket (AF PACKET, SOCK RAW, htons(ETH P ALL)); @

// Turn on the promiscuous mode.

mr.mr_type = PACKET MR PROMISC; @
setsockopt (sock, SOL_PACKET, PACKET ADD_MEMBERSHIP, &mr, @)
sizeof (mr));
// Getting captured packets
while (1) {
int data size=recvfrom(sock, buffer, PACKET LEN, 0, @

&saddr, (socklen t«)sizeof (saddr));
if(data_size) printf("Got one packet\n");

for raw socket, need to specify the
type of packets to receive
protocol is specified the third arg of
socket()
htons(ETH_P_ALL)
» packets of all protocols
should be passed to socket
htons(ETH_P_IP)
* only IP packets will be
passed to socket

Packet Sniffing Using Raw Sockets

e get all packets coming to computer
» but if packets are not destined for us

m packet capture using raw socket « cannot be captured
e turn on promiscuous mode
// Create the raw socket letin all packets on network
int sock = socket (AF PACKET, SOCK RAW, htons(ETH P ALL)); @ o once they are in, we can get
copy

// Turn on the promiscuous mode.

mr.mr_type = PACKET MR PROMISC; @
setsockopt (sock, SOL_PACKET, PACKET_ ADD_MEMBERSHIP, &mr, @) <:|

sizeof (mr));

enable promiscuous mode

« PACKET_MR_PROMISC

// Getting captured packets
* enables receiving all packets

while (1) {
int data size=recvfrom(sock, buffer, PACKET LEN, 0, @ oneasharedrnedhnn(oﬂen
&saddr, (socklen t«)sizeof (saddr)); knomﬁ]as"pronﬂscuous
if(data_size) printf("Got one packet\n"); rnode")

} « PACKET_ADD_MEMBERSHIP
3 . « toreceive all frames,
Struct packet_mreq mr; , regardless of destination
mr.mr_type: specifies which action to perform

struct packet_mreq {

int mr_ifindex; /* interface index */

unsigned short mr_type; /* action */
unsigned short mr_alen; /* address length */
unsigned char mr_address[8]; /* physical layer address */

1

Packet Sniffing Using Raw Sockets

packet capture using raw socket

// Create the raw socket
int sock = socket (AF PACKET, SOCK RAW, htons(ETH P ALL)); @

// Turn on the promiscuous mode.

mr.mr_type = PACKET_MR PROMISC; @

setsockopt (sock, SOL_PACKET, PACKET ADD MEMBERSHIP, &mr, &
sizeof (mr));

// Getting captured packets

while (1) {
int data_size=recvfrom(sock, buffer, PACKET_LEN, O, Q¢ | Wwait for packets

&saddr, (socklen t«)sizeof (saddr));

if (data_size) printf("Got one packet\n"); = pr1nt|Dackets

Packet Sniffing Using Raw Sockets

i (sniff_raw.c)

= summary: four major steps
. creating a raw socket
2 choose the protocol
3. enable the promiscuous mode
+ wait for packets

// Create the raw socket
int sock = socket (AF PACKET, SOCK RAW, htons(ETH P ALL)); @

// Turn on the promiscuous mode.

mr.mr_type = PACKET MR PROMISC; @
setsockopt (sock, SOL_PACKET, PACKET ADD_MEMBERSHIP, &mr, @)
sizeof (mr));
// Getting captured packets
while (1) {
int data size=recvfrom(sock, buffer, PACKET LEN, 0, @

&saddr, (socklen t«)sizeof (saddr));
if (data_size) printf ("Got one packet\n");

	Packet Sniffing
	Introduction
	Introduction
	Introduction (cont.)
	How Packets Are Received?
	How Packets Are Received? (cont.)
	BSD (Berkeley Software Distribution) Packet Filter (BPF)
	BPF Filter Examples
	BSD (Berkeley Software Distribution) Packet Filter (BPF) (cont.)
	BSD Packet Filter (BPF) (cont.)
	Packet Sniffing
	Receiving Packets Using Sockets (udp_server.c)
	Packet Sniffing Using Raw Sockets
	Packet Sniffing Using Raw Sockets
	Packet Sniffing Using Raw Sockets
	Packet Sniffing Using Raw Sockets
	Packet Sniffing Using Raw Sockets
	Packet Sniffing Using Raw Sockets (sniff_raw.c)

