
Buffer Overflow Attack

Lecture 2

Instructor: C. Pu (Ph.D., Assistant Professor)

puc@marshall.edu

Introduction

 famous buffer overflow attacks
 Morris worn (1988)

 buffer overflow in the fingerd network service
 Code Red worm (2001)

 execute arbitrary code and infect the machine with the worm
 SQL Slammer (2003)

 generate random IP addresses and send itself out to those
addresses

 Stagefright attack against Android (2015)
 allows adversary to perform arbitrary operations on the victim's

device
 more…

Program Memory Layout

 prerequisite of understanding buffer
overflow attack:

 understanding how the data memory
is arranged inside a process

 when program running, needs
memory space to store data

 for C program, its memory is divided
into five segments

 text segment
 data segment
 BSS segment
 heap
 stack store executable

code of program
(read-only)

store static/global
variables

store
uninitialized
static/global
variables
(filled with
zero)

dynamic
memory
allocation

store local variables
defined inside functions,
and function-related data
(return address)

Program Memory Layout (cont.)

ptr points to the
memory here

a, b

y

x

allocates size bytes of uninitialized storage
1 arg: number of bytes to allocate
ref: https://en.cppreference.com/w/c/memory/malloc

return the size
of data type

int pointer
pointer
variable

store executable
code of program
(read-only)

,ptr

https://en.cppreference.com/w/c/memory/malloc

Stack Memory Layout

 stack: store data used in function invocations
 a program executes as a series of function calls (execution)

 when function is called, space is allocated for it on the stack
 e.g.,

two integer arguments: a and b

two integer local variables: x and y

arguments passed to func()

address of
the function’s
frame

local variables
when func() is called, stack frame is
allocated

instruction placed right
after function call

Frame Pointer

 inside func(), how to access arguments and local variables?
 only way: knowing their memory add.
 issue: add. cannot be determined during compilation

(compilers cannot predict run-time status of stack)
 solution: frame pointer, a special register in CPU

 points to a fixed location in stack frame
 the add. of each argument and local variable can be

calculated using frame pointer and add. offset
 the value of offset can be decided during compilation

 the value of frame pointer can change during run time
value of b
value of a

return add.
prev. frame pointer

value of x
value of y

current
frame
pointer

get valuestore result

Frame Pointer

value of b
value of a

return add.
prev. frame pointer

value of y
value of x

current
frame
pointer

frame pointer register (x86 architecture)

movl array_base(%esi), %eax
add the address of memory location array_base to the contents of
number register %esi to determine an address in memory. Then
move the contents of this address into number register %eax.

addl %edx, %eax
adds together its two operands (%edx and %eax), storing the
result in its second operand (%eax)

eax and edx: general-purpose registers storing temporary values

12(%ebp): %ebp + 12

-8(%ebp): %ebp - 8

on 32-bit architecture,
return address and frame
pointer both occupy 4 bytes.
So,
a is at ebp + 8
b is at ebp + 12

Function Call Chain

 call another function from inside a function
 every time function is called, a stack frame is allocated on the

top of stack
 when function is returned (completed), the stack frame

allocated for it is released
 e.g.,

void f(int a, int b)
{

int x;
}
void main()
{

f(1,2);
printf("hello world");

}

Function Call Chain (cont.)

 only one frame pointer register: always pointing to the frame of
current function

 question: how the functions were called?

main()

foo()

bar()

Stack Buffer-Overflow Attack

 memory copying: copying data from one place to another
place

 before copying, a program allocates memory space
 issue: programmer fails to allocate sufficient amount of

memory
 consequence: more data is copied to the des. buffer than the

amount of allocated space
 program crash (corruption of data beyond buffer)
 gain control of program (attacker)

 some languages (e.g., Java) automatically detect the problem
(buffer over-run), while many others (e.g., C) do not

buffer overflow

Copying Data Causes Buffer Overflow

 strcpy()

#include <string.h>
#include <stdio.h>

void main()
{

char src[40] = “hello world \0 extra string”;
char dest[40];

// copy to dest (destination) from src (source)
strcpy(dest, src);

}
only copy “hello world” to dest. why???

char* strcpy(char* destination, const char* source):
• copies the string pointed by the source

(including the null character) to the destination.
• when making copy, it stops when meets \0 (the

end of string)

Copying Data Causes Buffer Overflow

 when copying data, what will happen if the string is longer
than the size of buffer?

#include <string.h>

void foo(char *str)
{

char buffer[12];
strcpy(buffer, str);

}
void main()
{

char *str = “This is definitely longer than 12”;
foo(str);

}

overwrite

buffer
overflow

Exploiting Buffer Overflow
Vulnerability

 overflowing buffer:
 cause program crash
 run some other code (more interesting to attacker)

 if attackers control what code to run, they can hijack the
execution of programs

 privilege escalation for attackers

Exploiting Buffer Overflow
Vulnerability (cont.)

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
int foo(char *str){

char buffer[100];
/* The following statement has a buffer overflow problem */
strcpy(buffer, str);
return 1;

}

void main(int argc, char **argv){
char str[400];
FILE *badfile;
badfile = fopen("badfile", "r");
fread(str, sizeof(char), 300, badfile);
foo(str);
printf("Returned Properly\n");

}

open file “badfile” to read.

do you know
what inside?

read 300 bytes and copy
data to 100 bytes buffer
the content is copied to
buffer from “badfile”

Exploiting Buffer Overflow
Vulnerability (cont.)

force program to jump to our code (already in
memory)
• using buffer overflow

• overwrite return add. field
• use add. of malicious code to

overwrite
• when foo() returns, it jumps to new add.

(add. of malicious code)

get code into memory of running program:
• not difficult:

• place code in “badfile”
• let program read “badfile”

• program copies code to buffer

Setup for Environment

 attack environment: Ubuntu
 buffer overflow has a long history, so many OS have

countermeasures against it
 to simplify environment

 turn off countermeasures
 later on, turn them back on to show

 countermeasures only make buffer overflow more difficult, not
impossible

Disable Address Randomization

 address space layout randomization (ASLR):
countermeasure to buffer overflow

 randomizing the memory space of key data areas in process
 the base of executable
 the positions of stack, heap, and libraries

 making it difficult for attackers to guess the add. of injected
malicious code

Disable Address Randomization

 turning countermeasure off

 goal: exploit buffer overflow vulnerability in Set-UID root
program

 a Set-UID root program runs with root privilege when
executed by normal user

 assigning normal user extra privileges
 if buffer overflow vulnerability is exploited in privileged Set-

UID root program
 consequence: the injected malicious code can run with root’s

privilege

Vulnerable Program: stack.c

 compile set-uid root version of program

 1st command: compiles stack.c program
 2nd and 3rd commands: turn executable

stack into root-owned set-uid program
 the order of 2nd and 3rd commands

cannot be reversed

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
int foo(char *str){

char buffer[100];
/* The following statement has a buffer
overflow problem */
strcpy(buffer, str);
return 1;

}

void main(int argc, char **argv){
char str[400];
FILE *badfile;
badfile = fopen("badfile", "r");
fread(str, sizeof(char), 300, badfile);
foo(str);
printf("Returned Properly\n");

}

make stack
executable

turn off Stack-Guard
(countermeasure)

sudo chown root stack: change ownership

sudo chmod 4755 stack: sets permissions (read, write, execute)

Vulnerable Program: stack.c

 badfile: contains random contents
 when the size of file is less than 100 bytes, the program runs

properly
 when the size of file is larger than 100 bytes, the program

crashes
 buffer overflow happens

$ echo “aaaa” > badfile
$./stack
Returned Properly
$
$ echo “aaa … (100 characters omitted) … aaa” > badfile
$./stack
Segmentation fault (core dumped)

	Buffer Overflow Attack
	Introduction
	Program Memory Layout
	Program Memory Layout (cont.)
	Stack Memory Layout
	Frame Pointer
	Frame Pointer
	Function Call Chain
	Function Call Chain (cont.)
	Stack Buffer-Overflow Attack
	Copying Data Causes Buffer Overflow
	Copying Data Causes Buffer Overflow
	Exploiting Buffer Overflow Vulnerability
	Exploiting Buffer Overflow Vulnerability (cont.)
	Exploiting Buffer Overflow Vulnerability (cont.)
	Setup for Environment
	Disable Address Randomization
	Disable Address Randomization
	Vulnerable Program: stack.c
	Vulnerable Program: stack.c

