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Introduction

 countermeasures proposed and deployed in real-world
systems and software

 from hardware architecture, OS, compiler, library, to
applications



Safer Functions

 to some memory copy functions, certain special characters
decide whether the copy should end or not

 dangerous: the length of data that can be copied is decided by
data, which may be controlled by users

 e.g., strcpy, sprintf, strcat, and gets
 strcpy: https://www.cplusplus.com/reference/cstring/strcpy/
 sprintf: https://www.cplusplus.com/reference/cstdio/sprintf/?kw=sprintf
 strcat: https://www.cplusplus.com/reference/cstring/strcat/?kw=strcat
 gets: https://www.cplusplus.com/reference/cstdio/gets/?kw=gets

https://www.cplusplus.com/reference/cstring/strcpy/
https://www.cplusplus.com/reference/cstdio/sprintf/?kw=sprintf
https://www.cplusplus.com/reference/cstring/strcat/?kw=strcat
https://www.cplusplus.com/reference/cstdio/gets/?kw=gets


Safer Functions (cont.)

 safer approach:
 let developers have control: specifying the length in code

 the size of target buffer decides the length, not the data
 e.g., strncpy, snprintf, strncat, fgets

 strncpy: https://www.cplusplus.com/reference/cstring/strncpy/?kw=strncpy
 snprintf: https://www.cplusplus.com/reference/cstdio/snprintf/?kw=snprintf
 strncat: https://www.cplusplus.com/reference/cstring/strncat/?kw=strncat
 fgets: https://www.cplusplus.com/reference/cstdio/fgets/?kw=fgets
 developers explicitly specify the max length of data to be copied

into the target buffer
 need to think about buffer size

 relatively safer
 what if developer intentionally specifies longer data?

https://www.cplusplus.com/reference/cstring/strncpy/?kw=strncpy
https://www.cplusplus.com/reference/cstdio/snprintf/?kw=snprintf
https://www.cplusplus.com/reference/cstring/strncat/?kw=strncat
https://www.cplusplus.com/reference/cstdio/fgets/?kw=fgets


Safer Dynamic Link Library

 drawback of safer function approach: require change in code
 what if you only have binary?

 difficult to change binary
 solution: dynamic link libraries (program uses library)

 the library function code is not included in code’s binary,
instead, it is dynamically linked to code

 safer library safer code
 e.g., libsafe

 perform boundary checking based on frame pointer
 not allow to copy beyond frame pointer

 e.g., libmib
 support “limitless” strings, instead of fixed length string buffer
 its own version functions like strcpy

https://www.usenix.org/legacy/publications/library/proceedings/sec02/full_papers/lhee/lhee_html/node6.html
http://www.mibsoftware.com/libmib/


Program Static Analyzer

 instead of eliminating buffer overflow, warns developers of
buffer overflow vulnerabilities in code

 implemented as command-line tool or in the editor
 notify developers of unsafe code during developing phase

 e.g.,
 ITS4 (C/C++)

 identify dangerous patterns in C/C++



Programing Language

 developer relies on programming language to develop
program

 burden is removed if language does checking against buffer
overflow

 e.g.,
 Java and Python

 automatic boundary checking
 safer languages for avoiding buffer overflow



Other Approaches

 compiler: compile code, verify stack, and eliminate buffer
overflow conditions

 e.g., Stackshield and StackGuard:
 check whether the return addr. has been modified before a

function returns
 Stackshield

 idea: save a copy of return addr. at safer place
 at beginning of function, compiler inserts instructions to

copy return addr. to a location that cannot be overflown
 before returning from function, comparing return addr. on

stack with the one in safer place
 determine buffer overflow



Other Approaches

 compiler: compile code, verify stack, and eliminate buffer
overflow conditions

 e.g., Stackshield and StackGuard:
 check whether the return addr. has been modified before a

function returns
 StackGuard

 idea: put a guard between return addr. and buffer
 if return addr. is modified, the guard will also be modified

 at the start of function,
 the compiler adds a random value below return addr.
 save a copy of random value at safer location (off stack)

 before function returns
 checking against the saved value



Other Approaches (cont.)

 operating system
 loader program:

 before execution, program is loaded into system
 running environment is set up

 dictate how the memory of program is laid out
 e.g.,Address Space Layout Randomization (ASLR)

 randomize the layout of program memory, making it hard for
attacker to guess memory address

 hardware architecture
 modern CPU supports NX bit (No-eXecute)

 separate code from data
 OS marks certain memory areas as non-executable

 processor refuses to execute any code residing in these areas
 if stack is marked as non-executable



Address Randomization

 to succeed in buffer overflow, attackers need to get
vulnerable program to “return” to their injected
code

 guess where the injected code will be
 (easy) predict where the stack is located in memory

 most OS places stack in fixed location
 necessary to place stack in fixed location?
 when compiler generates binary code from source code

 addr. of data are not hard-coded in binary code
 instead, their addr. are calculated based on frame and stack

pointers
 add. of data are represented as the offset of these two pointers

No



Address Randomization

 for attackers, they need to know the absolute addr., not the
offset

 important: knowing the stack location
 idea to defend against buffer overflow?

 randomize the start location of stack
 benefits:

 make attacker’s job more hard
 no effect on program

 Address Layout Randomization (ASLR)



Address Randomization on Linux

 to run program, OS loads program
into system

 set up stack and heap memory for
program

 memory randomization is normally
implemented in loader

 for Linux, ELF (Executable and
Linkable Format) is common binary
format for program

 randomization can be carried out
by ELF loader

store executable 
code of program 
(read-only) 

store 
static/global 
variables

store 
uninitialized 
static/global 
variables 
(filled with 
zero)

dynamic 
memory 
allocation

store local variables 
defined inside functions, 
and function-related data 
(return address)  



Address Randomization on Linux

 e.g., simple program with two buffers: stack and heap
 print out their addr. to see whether stack and heap are

allocated in different places every time we run program

#include <stdio.h>
#include <stdlib.h>

void main() {
char x[12];
char *y = malloc (sizeof(char)*12);

printf(“address of buffer x (on stack): 0x%x\n”, x);
printf(“address of buffer y (on heap): 0x%x\n”, y);

}

buffer on stack
buffer on heap

print value in 
hexadecimal format



Address Randomization on Linux

 e.g., simple program with two buffers: stack and heap
 compile and run code under different randomization settings

// turn off randomization
$ sudo sysctl –w kernel.randomize_va_space=0
kernel.randomize_va_space =0
$ program.out
Address of buffer x (on stack): 0xbffff370
Address of buffer y (on heap): 0x804b008
$ program.out
Address of buffer x (on stack): 0xbffff370
Address of buffer y (on heap): 0x804b008

(kernel variable) 
specify the type of 
randomization

randomization 
is turned off



Address Randomization on Linux

 e.g., simple program with two buffers: stack and heap
 compile and run code under different randomization settings

// randomize stack address
$ sudo sysctl –w kernel.randomize_va_space=1
kernel.randomize_va_space =1
$ program.out
Address of buffer x (on stack): 0xbf9deb10
Address of buffer y (on heap): 0x804b008
$ program.out
Address of buffer x (on stack): 0xbf8c49d0
Address of buffer y (on heap): 0x804b008

randomization 
is turned on
(only randomize stack)

changed



Address Randomization on Linux

 e.g., simple program with two buffers: stack and heap
 compile and run code under different randomization settings

// randomize heap address
$ sudo sysctl –w kernel.randomize_va_space=2
kernel.randomize_va_space =2
$ program.out
Address of buffer x (on stack): 0xbf9c76f0
Address of buffer y (on heap): 0x87e6008
$ program.out
Address of buffer x (on stack): 0xbfe69700
Address of buffer y (on heap): 0xa020008

randomization 
is turned on
randomize stack and heap)

changed
changed



StackGuard

 stack-based buffer overflow attack needs to modify return
addr.

 solution to stack-based buffer overflow attack:
 detect whether the return add. is modified before returning

from a function
 StackGuard: place a guard between return addr. and buffer,

and use the guard to detect whether the return addr. is
modified

 incorporated into compliers like gcc



StackGuard

 place non-predictable value (called
guard) between buffer and return
addr.

 before returning from function,
check whether the value is modified

 if modified, the return addr. has been
modified

detecting whether the return addr. is
overwritten

=
detecting whether the guard is modified
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