
Buffer Overflow Countermeasures

Lecture 3

Instructor: C. Pu (Ph.D., Assistant Professor)

puc@marshall.edu

Introduction

 countermeasures proposed and deployed in real-world
systems and software

 from hardware architecture, OS, compiler, library, to
applications

Safer Functions

 to some memory copy functions, certain special characters
decide whether the copy should end or not

 dangerous: the length of data that can be copied is decided by
data, which may be controlled by users

 e.g., strcpy, sprintf, strcat, and gets
 strcpy: https://www.cplusplus.com/reference/cstring/strcpy/
 sprintf: https://www.cplusplus.com/reference/cstdio/sprintf/?kw=sprintf
 strcat: https://www.cplusplus.com/reference/cstring/strcat/?kw=strcat
 gets: https://www.cplusplus.com/reference/cstdio/gets/?kw=gets

https://www.cplusplus.com/reference/cstring/strcpy/
https://www.cplusplus.com/reference/cstdio/sprintf/?kw=sprintf
https://www.cplusplus.com/reference/cstring/strcat/?kw=strcat
https://www.cplusplus.com/reference/cstdio/gets/?kw=gets

Safer Functions (cont.)

 safer approach:
 let developers have control: specifying the length in code

 the size of target buffer decides the length, not the data
 e.g., strncpy, snprintf, strncat, fgets

 strncpy: https://www.cplusplus.com/reference/cstring/strncpy/?kw=strncpy
 snprintf: https://www.cplusplus.com/reference/cstdio/snprintf/?kw=snprintf
 strncat: https://www.cplusplus.com/reference/cstring/strncat/?kw=strncat
 fgets: https://www.cplusplus.com/reference/cstdio/fgets/?kw=fgets
 developers explicitly specify the max length of data to be copied

into the target buffer
 need to think about buffer size

 relatively safer
 what if developer intentionally specifies longer data?

https://www.cplusplus.com/reference/cstring/strncpy/?kw=strncpy
https://www.cplusplus.com/reference/cstdio/snprintf/?kw=snprintf
https://www.cplusplus.com/reference/cstring/strncat/?kw=strncat
https://www.cplusplus.com/reference/cstdio/fgets/?kw=fgets

Safer Dynamic Link Library

 drawback of safer function approach: require change in code
 what if you only have binary?

 difficult to change binary
 solution: dynamic link libraries (program uses library)

 the library function code is not included in code’s binary,
instead, it is dynamically linked to code

 safer library safer code
 e.g., libsafe

 perform boundary checking based on frame pointer
 not allow to copy beyond frame pointer

 e.g., libmib
 support “limitless” strings, instead of fixed length string buffer
 its own version functions like strcpy

https://www.usenix.org/legacy/publications/library/proceedings/sec02/full_papers/lhee/lhee_html/node6.html
http://www.mibsoftware.com/libmib/

Program Static Analyzer

 instead of eliminating buffer overflow, warns developers of
buffer overflow vulnerabilities in code

 implemented as command-line tool or in the editor
 notify developers of unsafe code during developing phase

 e.g.,
 ITS4 (C/C++)

 identify dangerous patterns in C/C++

Programing Language

 developer relies on programming language to develop
program

 burden is removed if language does checking against buffer
overflow

 e.g.,
 Java and Python

 automatic boundary checking
 safer languages for avoiding buffer overflow

Other Approaches

 compiler: compile code, verify stack, and eliminate buffer
overflow conditions

 e.g., Stackshield and StackGuard:
 check whether the return addr. has been modified before a

function returns
 Stackshield

 idea: save a copy of return addr. at safer place
 at beginning of function, compiler inserts instructions to

copy return addr. to a location that cannot be overflown
 before returning from function, comparing return addr. on

stack with the one in safer place
 determine buffer overflow

Other Approaches

 compiler: compile code, verify stack, and eliminate buffer
overflow conditions

 e.g., Stackshield and StackGuard:
 check whether the return addr. has been modified before a

function returns
 StackGuard

 idea: put a guard between return addr. and buffer
 if return addr. is modified, the guard will also be modified

 at the start of function,
 the compiler adds a random value below return addr.
 save a copy of random value at safer location (off stack)

 before function returns
 checking against the saved value

Other Approaches (cont.)

 operating system
 loader program:

 before execution, program is loaded into system
 running environment is set up

 dictate how the memory of program is laid out
 e.g.,Address Space Layout Randomization (ASLR)

 randomize the layout of program memory, making it hard for
attacker to guess memory address

 hardware architecture
 modern CPU supports NX bit (No-eXecute)

 separate code from data
 OS marks certain memory areas as non-executable

 processor refuses to execute any code residing in these areas
 if stack is marked as non-executable

Address Randomization

 to succeed in buffer overflow, attackers need to get
vulnerable program to “return” to their injected
code

 guess where the injected code will be
 (easy) predict where the stack is located in memory

 most OS places stack in fixed location
 necessary to place stack in fixed location?
 when compiler generates binary code from source code

 addr. of data are not hard-coded in binary code
 instead, their addr. are calculated based on frame and stack

pointers
 add. of data are represented as the offset of these two pointers

No

Address Randomization

 for attackers, they need to know the absolute addr., not the
offset

 important: knowing the stack location
 idea to defend against buffer overflow?

 randomize the start location of stack
 benefits:

 make attacker’s job more hard
 no effect on program

 Address Layout Randomization (ASLR)

Address Randomization on Linux

 to run program, OS loads program
into system

 set up stack and heap memory for
program

 memory randomization is normally
implemented in loader

 for Linux, ELF (Executable and
Linkable Format) is common binary
format for program

 randomization can be carried out
by ELF loader

store executable
code of program
(read-only)

store
static/global
variables

store
uninitialized
static/global
variables
(filled with
zero)

dynamic
memory
allocation

store local variables
defined inside functions,
and function-related data
(return address)

Address Randomization on Linux

 e.g., simple program with two buffers: stack and heap
 print out their addr. to see whether stack and heap are

allocated in different places every time we run program

#include <stdio.h>
#include <stdlib.h>

void main() {
char x[12];
char *y = malloc (sizeof(char)*12);

printf(“address of buffer x (on stack): 0x%x\n”, x);
printf(“address of buffer y (on heap): 0x%x\n”, y);

}

buffer on stack
buffer on heap

print value in
hexadecimal format

Address Randomization on Linux

 e.g., simple program with two buffers: stack and heap
 compile and run code under different randomization settings

// turn off randomization
$ sudo sysctl –w kernel.randomize_va_space=0
kernel.randomize_va_space =0
$ program.out
Address of buffer x (on stack): 0xbffff370
Address of buffer y (on heap): 0x804b008
$ program.out
Address of buffer x (on stack): 0xbffff370
Address of buffer y (on heap): 0x804b008

(kernel variable)
specify the type of
randomization

randomization
is turned off

Address Randomization on Linux

 e.g., simple program with two buffers: stack and heap
 compile and run code under different randomization settings

// randomize stack address
$ sudo sysctl –w kernel.randomize_va_space=1
kernel.randomize_va_space =1
$ program.out
Address of buffer x (on stack): 0xbf9deb10
Address of buffer y (on heap): 0x804b008
$ program.out
Address of buffer x (on stack): 0xbf8c49d0
Address of buffer y (on heap): 0x804b008

randomization
is turned on
(only randomize stack)

changed

Address Randomization on Linux

 e.g., simple program with two buffers: stack and heap
 compile and run code under different randomization settings

// randomize heap address
$ sudo sysctl –w kernel.randomize_va_space=2
kernel.randomize_va_space =2
$ program.out
Address of buffer x (on stack): 0xbf9c76f0
Address of buffer y (on heap): 0x87e6008
$ program.out
Address of buffer x (on stack): 0xbfe69700
Address of buffer y (on heap): 0xa020008

randomization
is turned on
randomize stack and heap)

changed
changed

StackGuard

 stack-based buffer overflow attack needs to modify return
addr.

 solution to stack-based buffer overflow attack:
 detect whether the return add. is modified before returning

from a function
 StackGuard: place a guard between return addr. and buffer,

and use the guard to detect whether the return addr. is
modified

 incorporated into compliers like gcc

StackGuard

 place non-predictable value (called
guard) between buffer and return
addr.

 before returning from function,
check whether the value is modified

 if modified, the return addr. has been
modified

detecting whether the return addr. is
overwritten

=
detecting whether the guard is modified

	Buffer Overflow Countermeasures
	Introduction
	Safer Functions
	Safer Functions (cont.)
	Safer Dynamic Link Library
	Program Static Analyzer
	Programing Language
	Other Approaches
	Other Approaches
	Other Approaches (cont.)
	Address Randomization
	Address Randomization
	Address Randomization on Linux
	Address Randomization on Linux
	Address Randomization on Linux
	Address Randomization on Linux
	Address Randomization on Linux
	StackGuard
	StackGuard

