
Buffer Overflow Countermeasures

Lecture 3

Instructor: C. Pu (Ph.D., Assistant Professor)

puc@marshall.edu

Introduction

 countermeasures proposed and deployed in real-world
systems and software

 from hardware architecture, OS, compiler, library, to
applications

Safer Functions

 to some memory copy functions, certain special characters
decide whether the copy should end or not

 dangerous: the length of data that can be copied is decided by
data, which may be controlled by users

 e.g., strcpy, sprintf, strcat, and gets
 strcpy: https://www.cplusplus.com/reference/cstring/strcpy/
 sprintf: https://www.cplusplus.com/reference/cstdio/sprintf/?kw=sprintf
 strcat: https://www.cplusplus.com/reference/cstring/strcat/?kw=strcat
 gets: https://www.cplusplus.com/reference/cstdio/gets/?kw=gets

https://www.cplusplus.com/reference/cstring/strcpy/
https://www.cplusplus.com/reference/cstdio/sprintf/?kw=sprintf
https://www.cplusplus.com/reference/cstring/strcat/?kw=strcat
https://www.cplusplus.com/reference/cstdio/gets/?kw=gets

Safer Functions (cont.)

 safer approach:
 let developers have control: specifying the length in code

 the size of target buffer decides the length, not the data
 e.g., strncpy, snprintf, strncat, fgets

 strncpy: https://www.cplusplus.com/reference/cstring/strncpy/?kw=strncpy
 snprintf: https://www.cplusplus.com/reference/cstdio/snprintf/?kw=snprintf
 strncat: https://www.cplusplus.com/reference/cstring/strncat/?kw=strncat
 fgets: https://www.cplusplus.com/reference/cstdio/fgets/?kw=fgets
 developers explicitly specify the max length of data to be copied

into the target buffer
 need to think about buffer size

 relatively safer
 what if developer intentionally specifies longer data?

https://www.cplusplus.com/reference/cstring/strncpy/?kw=strncpy
https://www.cplusplus.com/reference/cstdio/snprintf/?kw=snprintf
https://www.cplusplus.com/reference/cstring/strncat/?kw=strncat
https://www.cplusplus.com/reference/cstdio/fgets/?kw=fgets

Safer Dynamic Link Library

 drawback of safer function approach: require change in code
 what if you only have binary?

 difficult to change binary
 solution: dynamic link libraries (program uses library)

 the library function code is not included in code’s binary,
instead, it is dynamically linked to code

 safer library safer code
 e.g., libsafe

 perform boundary checking based on frame pointer
 not allow to copy beyond frame pointer

 e.g., libmib
 support “limitless” strings, instead of fixed length string buffer
 its own version functions like strcpy

https://www.usenix.org/legacy/publications/library/proceedings/sec02/full_papers/lhee/lhee_html/node6.html
http://www.mibsoftware.com/libmib/

Program Static Analyzer

 instead of eliminating buffer overflow, warns developers of
buffer overflow vulnerabilities in code

 implemented as command-line tool or in the editor
 notify developers of unsafe code during developing phase

 e.g.,
 ITS4 (C/C++)

 identify dangerous patterns in C/C++

Programing Language

 developer relies on programming language to develop
program

 burden is removed if language does checking against buffer
overflow

 e.g.,
 Java and Python

 automatic boundary checking
 safer languages for avoiding buffer overflow

Other Approaches

 compiler: compile code, verify stack, and eliminate buffer
overflow conditions

 e.g., Stackshield and StackGuard:
 check whether the return addr. has been modified before a

function returns
 Stackshield

 idea: save a copy of return addr. at safer place
 at beginning of function, compiler inserts instructions to

copy return addr. to a location that cannot be overflown
 before returning from function, comparing return addr. on

stack with the one in safer place
 determine buffer overflow

Other Approaches

 compiler: compile code, verify stack, and eliminate buffer
overflow conditions

 e.g., Stackshield and StackGuard:
 check whether the return addr. has been modified before a

function returns
 StackGuard

 idea: put a guard between return addr. and buffer
 if return addr. is modified, the guard will also be modified

 at the start of function,
 the compiler adds a random value below return addr.
 save a copy of random value at safer location (off stack)

 before function returns
 checking against the saved value

Other Approaches (cont.)

 operating system
 loader program:

 before execution, program is loaded into system
 running environment is set up

 dictate how the memory of program is laid out
 e.g.,Address Space Layout Randomization (ASLR)

 randomize the layout of program memory, making it hard for
attacker to guess memory address

 hardware architecture
 modern CPU supports NX bit (No-eXecute)

 separate code from data
 OS marks certain memory areas as non-executable

 processor refuses to execute any code residing in these areas
 if stack is marked as non-executable

Address Randomization

 to succeed in buffer overflow, attackers need to get
vulnerable program to “return” to their injected
code

 guess where the injected code will be
 (easy) predict where the stack is located in memory

 most OS places stack in fixed location
 necessary to place stack in fixed location?
 when compiler generates binary code from source code

 addr. of data are not hard-coded in binary code
 instead, their addr. are calculated based on frame and stack

pointers
 add. of data are represented as the offset of these two pointers

No

Address Randomization

 for attackers, they need to know the absolute addr., not the
offset

 important: knowing the stack location
 idea to defend against buffer overflow?

 randomize the start location of stack
 benefits:

 make attacker’s job more hard
 no effect on program

 Address Layout Randomization (ASLR)

Address Randomization on Linux

 to run program, OS loads program
into system

 set up stack and heap memory for
program

 memory randomization is normally
implemented in loader

 for Linux, ELF (Executable and
Linkable Format) is common binary
format for program

 randomization can be carried out
by ELF loader

store executable
code of program
(read-only)

store
static/global
variables

store
uninitialized
static/global
variables
(filled with
zero)

dynamic
memory
allocation

store local variables
defined inside functions,
and function-related data
(return address)

Address Randomization on Linux

 e.g., simple program with two buffers: stack and heap
 print out their addr. to see whether stack and heap are

allocated in different places every time we run program

#include <stdio.h>
#include <stdlib.h>

void main() {
char x[12];
char *y = malloc (sizeof(char)*12);

printf(“address of buffer x (on stack): 0x%x\n”, x);
printf(“address of buffer y (on heap): 0x%x\n”, y);

}

buffer on stack
buffer on heap

print value in
hexadecimal format

Address Randomization on Linux

 e.g., simple program with two buffers: stack and heap
 compile and run code under different randomization settings

// turn off randomization
$ sudo sysctl –w kernel.randomize_va_space=0
kernel.randomize_va_space =0
$ program.out
Address of buffer x (on stack): 0xbffff370
Address of buffer y (on heap): 0x804b008
$ program.out
Address of buffer x (on stack): 0xbffff370
Address of buffer y (on heap): 0x804b008

(kernel variable)
specify the type of
randomization

randomization
is turned off

Address Randomization on Linux

 e.g., simple program with two buffers: stack and heap
 compile and run code under different randomization settings

// randomize stack address
$ sudo sysctl –w kernel.randomize_va_space=1
kernel.randomize_va_space =1
$ program.out
Address of buffer x (on stack): 0xbf9deb10
Address of buffer y (on heap): 0x804b008
$ program.out
Address of buffer x (on stack): 0xbf8c49d0
Address of buffer y (on heap): 0x804b008

randomization
is turned on
(only randomize stack)

changed

Address Randomization on Linux

 e.g., simple program with two buffers: stack and heap
 compile and run code under different randomization settings

// randomize heap address
$ sudo sysctl –w kernel.randomize_va_space=2
kernel.randomize_va_space =2
$ program.out
Address of buffer x (on stack): 0xbf9c76f0
Address of buffer y (on heap): 0x87e6008
$ program.out
Address of buffer x (on stack): 0xbfe69700
Address of buffer y (on heap): 0xa020008

randomization
is turned on
randomize stack and heap)

changed
changed

StackGuard

 stack-based buffer overflow attack needs to modify return
addr.

 solution to stack-based buffer overflow attack:
 detect whether the return add. is modified before returning

from a function
 StackGuard: place a guard between return addr. and buffer,

and use the guard to detect whether the return addr. is
modified

 incorporated into compliers like gcc

StackGuard

 place non-predictable value (called
guard) between buffer and return
addr.

 before returning from function,
check whether the value is modified

 if modified, the return addr. has been
modified

detecting whether the return addr. is
overwritten

=
detecting whether the guard is modified

	Buffer Overflow Countermeasures
	Introduction
	Safer Functions
	Safer Functions (cont.)
	Safer Dynamic Link Library
	Program Static Analyzer
	Programing Language
	Other Approaches
	Other Approaches
	Other Approaches (cont.)
	Address Randomization
	Address Randomization
	Address Randomization on Linux
	Address Randomization on Linux
	Address Randomization on Linux
	Address Randomization on Linux
	Address Randomization on Linux
	StackGuard
	StackGuard

