
Firewall

Lecture 6

Instructor: C. Pu (Ph.D., Assistant Professor)

puc@marshall.edu 



Introduction

 firewall: stop unauthorized traffic flowing from one network
to another

 separating trusted and untrusted components
 differentiating networks within a trusted network

 distinction between various divisions in an organization
 firewall implementation: hardware, software, or combination
 firewall’s main functionalities:

 filtering data
 redirecting traffic
 protecting against network attacks



Firewall Requirements

 a well-designed firewall meets following requirements
1. all traffic between two trust zones should pass through
2. only authorized traffic (defined by security policy) should be

allowed to pass through
3. immune to penetration



Firewall Policy

 firewall policy: rules that should be enforced
 rule: provide controls for traffic on network
1. user control: controls access to the data based on the

role of the user who is attempting to access it
 applied to user inside firewall perimeter

2. service control: access is controlled by the type of service
offered by the host that is being protected by firewall

 enforced on network address, port number, protocol
3. direction control: determines the direction in which

requests may be initiated and are allowed to flow
through the firewall

 inbound & outbound



Firewall Actions

 three actions:
 accepted: allowed to enter through firewall
 denied: not permitted to enter through firewall
 rejected: similar to denied, but notifying the source of

packet about decision

ingress filtering: inspects the incoming traffic to safeguard an internal
network and prevent attacks from outside.

egress filtering: inspects the outgoing network traffic and prevent the users
in the internal network to reach out to the outside network.
• for example:

• blocking social networking sites in school



Types of Firewalls

 depending on the mode of operation, there are three types
of firewalls

 packet filter firewall
 stateful firewall
 application/proxy firewall



Packet Filter Firewall

 inspects each packet and make decision based on
information in the packet header

 doesn’t pay attention to if the packet is a part of existing
stream or traffic

 advantages:
 speed; doesn’t maintain the states about packets

 also called stateless firewall

controls traffic based on
the information in packet
headers, without looking
into the payload that
contains application data



Stateful Firewall

 advantages:
 allowing through traffic that belong to

existing connection

● tracks the state of traffic by
monitoring all the
connection interactions
until is closed
● retrains packets until a

decision can be made

● connection state table is
maintained to understand
the context of packets



Application/Proxy Firewall

 controls input, output, and access from/to application or service
 unlike packet/stateful firewalls, inspects network traffic up to

application layer
 typical application: proxy (application proxy firewall)

 impersonating the intended recipient
 client’s connection terminates at proxy
 a new connection initiated from proxy to destination
 data is analyzed up to application layer to determine if the packet

should be allowed or rejected
 protecting internal from risk of direct interaction
 protecting sensitive information being leaked



Application/Proxy Firewall

 limitation:
 implementing new proxies for new protocols
 slower (reading the entire packet)

 advantages:
 authenticate user directly rather than depending on network

address of system



Building Firewall using Netfilter

 packet filter firewall implementation in Linux
 packet filtering can be done inside the kernel
 need to modify the kernel
 Linux provides two mechanisms (no need to recompile kernel)

 two mechanisms in Linux
Netfilter: provides hooks at critical points on the packet traversal path
inside Linux kernel
• allow packets to go through additional program logics (e.g., packet

filtering program)

Loadable Kernel Modules: allow privileged users to dynamically
add/remove modules to the kernel, so there is no need to recompile
the entire kernel



Writing Loadable Kernel Modules

 modular Linux kernel: a minimal part of kernel is loaded
into memory

 additional features can be implemented as kernel modules,
and be loaded into kernel dynamically

 e.g., a new kernel module supporting a new hardware
 kernel module: pieces of code that can be loaded and

unloaded on-demand at runtime
 they don’t run as specific processes but are executed in

kernel on behalf of current process
 need root privilege or CAP_SYS_MODULE capability to be

able to insert or remove kernel modules
reference: https://man7.org/linux/man-pages/man7/capabilities.7.html

https://man7.org/linux/man-pages/man7/capabilities.7.html


Loadable Kernel Modules (cont.)

setup entry point

cleanup entry point

defining function

two entry points: 

setup

cleanup

printk(): print to
kernel log buffer

specify an initialization function that
will be invoked when the kernel
module is inserted.

specify a cleanup function that will
be invoked when the kernel module
is removed.



Compiling Kernel Modules

Makefile

M: signifies that an external 
module is being built and tells 
the build environment where to 
place the built module file once 
it is built

-C: specify the directory of the 
library files for the kernel source

specifies object files which are 
built as loadable kernel modules

object file to be built

compile C file into object file
linking compiled object files together

compiled as points to be loaded 
into the kernel at runtime



Installing Kernel Modules

• in the sample code, we use
printk() to print out
messages to the kernel
buffer

• we can view the buffer
using dmesg

insert modules into the kernel

display the status of modules in the Linux kernel

filter the output with grep

remove a module from the kernel

examine the kernel log buffer and 
print the message buffer of kernel



Netfilter

 netfilter hooks in Linux: packet processing and filtering
framework

 in Linux,
 each protocol stack defines hooks along the packet’s traversal path

 hook is a location in the kernel that calls out of the kernel to a kernel
module routine

 developers use kernel modules to register callback functions to
hooks

 when packet arrives at a hook, the protocol stack calls netfilter
framework with the packet and hook number

 netfiler checks if any kernel module has registered a callback
function at this hook

 each registered module will be called to analyze or manipulate
packet, and return their verdict on packet



Netfilter (cont.)

 five return values (verdict) of modules:
 NF_ACCEPT: let the packet flow through the stack
 NF_DROP: discard the packet
 NF_QUEUE: pass the packet to the user space via nf_queue

facility
 perform packet handling in user space (asynchronous

operation)
 NF_STOLEN: inform the netfilter to forget about this packet,

the packet is further processed by the module
 NF_REPEAT: request the netfilter to call this module again

reference: https://www.netfilter.org/documentation/HOWTO/netfilter-hacking-HOWTO-4.html
(Writing New Netfilter Modules)

https://www.netfilter.org/documentation/HOWTO/netfilter-hacking-HOWTO-4.html


Netfiler Hooks for IPv4

 Netfiler defines five hooks for IPv4:

all incoming packets hit this hook 
(not include packets in promiscuous mode)

incoming packets will go through routing, 
which decides whether the packet is for
• other machines or

• will go through forwarding path
• host itself

• will go through the hook

move packets to other hosts (useful for firewall)

packets, forwarded or
generated, going out of host,
will hit this hook

packets generated by local host
reach this hook (the first hook
on their way out of host)



Implementing Simple Packet Filter 
Firewall

 implementing a packet filter using netfilter framework and
loadable kernel module

 goals:
 blocking all packets that are going out to port number 23
 preventing users from using telnet to connect to other machines



Implementing Simple Packet Filter 
Firewall

 implementing a callback function, telnetFilter,
for actual filtering

 inspect packet (TCP header, port number)
 if port # is 23, drop packet
 otherwise, allow to pass the reference of

entire packet

the filtering logic is
hardcoded here.
Drop the packet if
the destination TCP
port is 23 (telnet)

decisions



Implementing Simple Packet Filter 
Firewall

 struct sk_buff (means socket buffers)
 core structure in Linux networking
 socket buffers are the buffers where the Linux kernel handles

network packets
 packets are received by network card
 put into a socket buffer
 passed to network stack for processing

reference: https://www.kernel.org/doc/htmldocs/networking/API-struct-sk-buff.html

https://www.kernel.org/doc/htmldocs/networking/API-struct-sk-buff.html


Implementing Simple Packet Filter 
Firewall (cont.)

 hook previous callback function to one netfilter hook
 use either NF_IP_LOCAL_OUT or NF_IP_POST_ROUTING

register the hook

IPv4 packet family
use this netfilter hook
hook this callback function



Testing Our Firewall


	Firewall
	Introduction
	Firewall Requirements
	Firewall Policy
	Firewall Actions
	Types of Firewalls
	Packet Filter Firewall
	Stateful Firewall
	Application/Proxy Firewall
	Application/Proxy Firewall
	Building Firewall using Netfilter
	Writing Loadable Kernel Modules
	Loadable Kernel Modules (cont.)
	Compiling Kernel Modules
	Installing Kernel Modules
	Netfilter
	Netfilter (cont.)
	Netfiler Hooks for IPv4
	Implementing Simple Packet Filter Firewall
	Implementing Simple Packet Filter Firewall
	Implementing Simple Packet Filter Firewall
	Implementing Simple Packet Filter Firewall (cont.)
	Testing Our Firewall

